4.3. Partitioning

本文涉及的产品
云数据库 RDS SQL Server,独享型 2核4GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介:
	
mysql> SHOW VARIABLES LIKE '%partition%';

+-------------------+-------+
| Variable_name     | Value |
+-------------------+-------+
| have_partitioning | YES   |
+-------------------+-------+
1 row in set (0.00 sec)
	
	

4.3.1. RANGE

18.5.1. Partitioning Keys, Primary Keys, and Unique Keys
This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule governing this relationship can be expressed as follows: All columns used in the partitioning expression for a partitioned table must be part of every unique key that the table may have.

In other words, every unique key on the table must use every column in the table's partitioning expression. (This also includes the table's primary key, since it is by definition a unique key. This particular case is discussed later in this section.) For example, each of the following table creation statements is invalid:


SQL code:
mysql> create table tx (
    ->     id int not null ,
    ->     info_time date,
    ->     primary key(id,info_time)
    -> )
    -> PARTITION BY RANGE(info_time div 100)
    -> (
    ->     PARTITION p_2008_11 VALUES LESS THAN (200812),
    ->     PARTITION p_2008_12 VALUES LESS THAN (200901),
    ->     PARTITION p_2009_01 VALUES LESS THAN (200902),
    ->     PARTITION p_2009_02 VALUES LESS THAN (200903),
    ->     PARTITION p_2009_03 VALUES LESS THAN (200904),
    ->     PARTITION p_2009_04 VALUES LESS THAN (200905),
    ->     PARTITION p_catch_all VALUES LESS THAN MAXVALUE
    -> );
Query OK, 0 rows affected (0.17 sec)

mysql>
		
		
CREATE TABLE t1 (
    year_col  INT,
    some_data INT
)
PARTITION BY RANGE (year_col) (
    PARTITION p0 VALUES LESS THAN (1991),
    PARTITION p1 VALUES LESS THAN (1995),
    PARTITION p2 VALUES LESS THAN (1999),
    PARTITION p3 VALUES LESS THAN (2002),
    PARTITION p4 VALUES LESS THAN (2006),
    PARTITION p5 VALUES LESS THAN MAXVALUE
);
		
		

e.g.2

				
CREATE TABLE rc (
    a INT NOT NULL,
    b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
    PARTITION p0 VALUES LESS THAN (10,5),
    PARTITION p1 VALUES LESS THAN (20,10),
    PARTITION p2 VALUES LESS THAN (MAXVALUE,15),
    PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);
				
		
		
CREATE TABLE part_tab
(
	c1 int default NULL,
	c2 varchar(30) default NULL,
	c3 date default NULL

) engine=myisam
PARTITION BY RANGE (year(c3)) (
      PARTITION p0 VALUES LESS THAN (2000) ,
      PARTITION p1 VALUES LESS THAN (2001) ,
      PARTITION p2 VALUES LESS THAN (2002) ,
      PARTITION p3 VALUES LESS THAN (2003) ,
      PARTITION p4 VALUES LESS THAN (2004) ,
      PARTITION p12 VALUES LESS THAN (2012),
      PARTITION p13 VALUES LESS THAN MAXVALUE
);
		
		

4.3.2. LIST

				
CREATE TABLE client_firms (
    id   INT,
    name VARCHAR(35)
)
PARTITION BY LIST (id) (
    PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
    PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
    PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
    PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);
				
		

				
CREATE TABLE lc (
    a INT NULL,
    b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
    PARTITION p0 VALUES IN( (0,0), (NULL,NULL) ),
    PARTITION p1 VALUES IN( (0,1), (0,2), (0,3), (1,1), (1,2) ),
    PARTITION p2 VALUES IN( (1,0), (2,0), (2,1), (3,0), (3,1) ),
    PARTITION p3 VALUES IN( (1,3), (2,2), (2,3), (3,2), (3,3) )
);
				
		

				
CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
  PARTITION p1999 VALUES IN (1995, 1999, 2003)
    DATA DIRECTORY = '/var/appdata/95/data'
    INDEX DIRECTORY = '/var/appdata/95/idx',
  PARTITION p2000 VALUES IN (1996, 2000, 2004)
    DATA DIRECTORY = '/var/appdata/96/data'
    INDEX DIRECTORY = '/var/appdata/96/idx',
  PARTITION p2001 VALUES IN (1997, 2001, 2005)
    DATA DIRECTORY = '/var/appdata/97/data'
    INDEX DIRECTORY = '/var/appdata/97/idx',
  PARTITION p2000 VALUES IN (1998, 2002, 2006)
    DATA DIRECTORY = '/var/appdata/98/data'
    INDEX DIRECTORY = '/var/appdata/98/idx'
);
				
		

4.3.3. HASH

		
CREATE TABLE `test` (
  `userid` int(10) unsigned NOT NULL auto_increment,
  `username` int(10) unsigned NOT NULL DEFAULT '0',
  `password` int(10) unsigned NOT NULL DEFAULT '0',

  primary key (`userid`),
  KEY `userid` (`username`)
) ENGINE=InnoDB
PARTITION BY HASH(userid)
PARTITIONS 8;
		
		

使用HASH (year(created)) 替代 RANGE(year(created))

		
CREATE TABLE stuff (
	id INT AUTO_INCREMENT,
	name varchar(50),
	password varchar(50),
	created DATE,
	PRIMARY KEY (id, created)
)
PARTITION BY RANGE(year(created)) (
	PARTITION p0 VALUES LESS THAN (2010),
	PARTITION p1 VALUES LESS THAN (2012),
	PARTITION p2 VALUES LESS THAN MAXVALUE
);

更好的方法

CREATE TABLE stuff (
	id INT AUTO_INCREMENT,
	name varchar(50),
	password varchar(50),
	created DATE,
	PRIMARY KEY (id, created)
)
PARTITION BY HASH (year(created)) PARTITIONS 10;

我们演示一下

mysql> CREATE TABLE stuff (
    -> id INT AUTO_INCREMENT,
    -> name varchar(50),
    -> password varchar(50),
    -> created DATE,
    -> PRIMARY KEY (id, created)
    -> )
    -> PARTITION BY HASH (year(created)) PARTITIONS 10;
Query OK, 0 rows affected (0.08 sec)


mysql> insert into stuff (name,password,created) values('neo','test','2010-10-1');
Query OK, 1 row affected (0.06 sec)

mysql> insert into stuff (name,password,created) values('neo1','test','2012-2-1');
Query OK, 1 row affected (0.00 sec)

mysql> insert into stuff (name,password,created) values('neo2','test','2012-3-5');
Query OK, 1 row affected (0.00 sec)

mysql> insert into stuff (name,password,created) values('neo4','test','2011-1-5');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT
    ->   partition_name part,
    ->   partition_expression expr,
    ->   partition_description descr,
    ->   table_rows
    -> FROM
    ->   INFORMATION_SCHEMA.partitions
    -> WHERE
    ->   TABLE_SCHEMA = schema()
    ->   AND TABLE_NAME='stuff';
+------+---------------+-------+------------+
| part | expr          | descr | table_rows |
+------+---------------+-------+------------+
| p0   | year(created) | NULL  |          1 |
| p1   | year(created) | NULL  |          1 |
| p2   | year(created) | NULL  |          2 |
| p3   | year(created) | NULL  |          0 |
| p4   | year(created) | NULL  |          0 |
| p5   | year(created) | NULL  |          0 |
| p6   | year(created) | NULL  |          0 |
| p7   | year(created) | NULL  |          0 |
| p8   | year(created) | NULL  |          0 |
| p9   | year(created) | NULL  |          0 |
+------+---------------+-------+------------+
10 rows in set (0.02 sec)

mysql> EXPLAIN PARTITIONS SELECT * FROM stuff WHERE created='2011-01-05'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: stuff
   partitions: p1
         type: system
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
        Extra:
1 row in set (0.08 sec)

mysql> EXPLAIN PARTITIONS SELECT * FROM stuff WHERE created='2012-03-05'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: stuff
   partitions: p2
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 2
        Extra: Using where
1 row in set (0.00 sec)

		
		

4.3.3.1. LINEAR HASH

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT,
    store_id INT
)
PARTITION BY LINEAR HASH( YEAR(hired) )
PARTITIONS 4;
			

4.3.4. KEY分区

按照KEY进行分区类似于按照HASH分区,除了HASH分区使用的用户定义的表达式,而KEY分区的 哈希函数是由MySQL 服务器提供。MySQL 簇(Cluster)使用函数MD5()来实现KEY分区;

CREATE TABLE tk (
    col1 INT NOT NULL,
    col2 CHAR(5),
    col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;
		

4.3.5. Subpartitioning

CREATE TABLE ts (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( TO_DAYS(purchased) )
    SUBPARTITIONS 2 (
        PARTITION p0 VALUES LESS THAN (1990),
        PARTITION p1 VALUES LESS THAN (2000),
        PARTITION p2 VALUES LESS THAN MAXVALUE
    );

CREATE TABLE ts1 (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( MONTH(purchased) )
    SUBPARTITIONS 2 (
        PARTITION p0 VALUES LESS THAN (1990),
        PARTITION p1 VALUES LESS THAN (2000),
        PARTITION p2 VALUES LESS THAN MAXVALUE
    );
		

4.3.6. 分区管理

4.3.6.1. 新增分区

mysql 5.5+

为已经存在表添加分区

ALTER TABLE tbl_name  ADD PARTITION PARTITIONS 6;
			

新增 RANGE分区

ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (100,200,300,400)
                    DATA DIRECTORY = '/data/category'
                    INDEX DIRECTORY = '/data/category');
			

新增 LIST分区

			
CREATE TABLE expenses (
  expense_date DATE NOT NULL,
  category VARCHAR(30),
  amount DECIMAL (10,3)
);

ALTER TABLE expenses
PARTITION BY LIST COLUMNS (category)
(
  PARTITION p01 VALUES IN ( 'lodging', 'food'),
  PARTITION p02 VALUES IN ( 'flights', 'ground transportation'),
  PARTITION p03 VALUES IN ( 'leisure', 'customer entertainment'),
  PARTITION p04 VALUES IN ( 'communications'),
  PARTITION p05 VALUES IN ( 'fees')
);
			
			

新增 HASH分区

CREATE TABLE t1 (
    id INT,
    year_col INT
);

ALTER TABLE t1
    PARTITION BY HASH(id)
    PARTITIONS 8;
			
			
/* 在MySQL 5.1中*/
CREATE TABLE t2
(
  dt DATE
)
PARTITION BY RANGE (TO_DAYS(dt))
(
  PARTITION p01 VALUES LESS THAN (TO_DAYS('2007-01-01')),
  PARTITION p02 VALUES LESS THAN (TO_DAYS('2008-01-01')),
  PARTITION p03 VALUES LESS THAN (TO_DAYS('2009-01-01')),
  PARTITION p04 VALUES LESS THAN (MAXVALUE));

SHOW CREATE TABLE t2 \G
*************************** 1. row ***************************
       Table: t2
Create Table: CREATE TABLE `t2` (
  `dt` date DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (TO_DAYS(dt))
(PARTITION p01 VALUES LESS THAN (733042) ENGINE = MyISAM,
 PARTITION p02 VALUES LESS THAN (733407) ENGINE = MyISAM,
 PARTITION p03 VALUES LESS THAN (733773) ENGINE = MyISAM,
 PARTITION p04 VALUES LESS THAN MAXVALUE ENGINE = MyISAM) */



 /*在MySQL 5.5中*/
CREATE TABLE t2
(
  dt DATE
)
PARTITION BY RANGE COLUMNS (dt)
(
  PARTITION p01 VALUES LESS THAN ('2007-01-01'),
  PARTITION p02 VALUES LESS THAN ('2008-01-01'),
  PARTITION p03 VALUES LESS THAN ('2009-01-01'),
  PARTITION p04 VALUES LESS THAN (MAXVALUE));

SHOW CREATE TABLE t2 \G
*************************** 1. row ***************************
       Table: t2
Create Table: CREATE TABLE `t2` (
  `dt` date DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE  COLUMNS(dt)
(PARTITION p01 VALUES LESS THAN ('2007-01-01') ENGINE = MyISAM,
 PARTITION p02 VALUES LESS THAN ('2008-01-01') ENGINE = MyISAM,
 PARTITION p03 VALUES LESS THAN ('2009-01-01') ENGINE = MyISAM,
 PARTITION p04 VALUES LESS THAN (MAXVALUE) ENGINE = MyISAM) */
			
			

4.3.6.2. 删除分区

删除分区 p0

ALERT TABLE users DROP PARTITION p0;
			

4.3.6.3. 重建分区

使用 REORGANIZE 重建分区。

RANGE 分区重建
ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000));

将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。

LIST 分区重建
ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));
将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。

HASH/KEY 分区重建
ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2;
分区的数量改为2,
注意:在这里数量只能减少不能增加。想要增加可以用 ADD PARTITION 方法
			

调整HASH/KEY分区数量,将分区总数扩展到8个。

ALTER TABLE users ADD PARTITION PARTITIONS 8;
			

4.3.6.4. 分区维护

重建分区: 这和先删除保存在分区中的所有记录,然后重新插入它们,具有同样的效果。它可用于整理分区碎片。

示例:

ALTER TABLE t1 REBUILD PARTITION (p0, p1);
·         优化分区:如果从分区中删除了大量的行,或者对一个带有可变长度的行(也就是说,有VARCHAR,BLOB,或TEXT类型的列)作了许多修改,可以使用“ALTER TABLE ... OPTIMIZE PARTITION”来收回没有使用的空间,并整理分区数据文件的碎片。

示例:

ALTER TABLE t1 OPTIMIZE PARTITION (p0, p1);
在一个给定的分区表上使用“OPTIMIZE PARTITION”等同于在那个分区上运行CHECK PARTITION,ANALYZE PARTITION,和REPAIR PARTITION。

·         分析分区:读取并保存分区的键分布。

示例:

ALTER TABLE t1 ANALYZE PARTITION (p3);
·         修补分区: 修补被破坏的分区。

示例:

ALTER TABLE t1 REPAIR PARTITION (p0,p1);
·         检查分区: 可以使用几乎与对非分区表使用CHECK TABLE 相同的方式检查分区。

示例:

ALTER TABLE trb3 CHECK PARTITION (p1);
			

4.3.7. EXPLAIN PARTITIONS

EXPLAIN PARTITIONS

		
mysql> EXPLAIN PARTITIONS SELECT * FROM users\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: users
   partitions: p0,p1,p2,p3,p4,p5,p6
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 7
        Extra:
1 row in set (0.03 sec)

mysql> EXPLAIN PARTITIONS SELECT * FROM users WHERE id < 5\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: users
   partitions: p0,p1,p2,p3,p4,p5,p6
         type: range
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 7
        Extra: Using where
1 row in set (0.00 sec)
		
		

4.3.8. SHOW CREATE TABLE

SHOW CREATE TABLE

		
mysql> SHOW CREATE TABLE users\G
*************************** 1. row ***************************
       Table: users
Create Table: CREATE TABLE `users` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `username` varchar(20) NOT NULL DEFAULT '',
  `birthday` datetime DEFAULT NULL,
  PRIMARY KEY (`id`,`username`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=latin1
/*!50100 PARTITION BY KEY (id,username)
PARTITIONS 7 */
1 row in set (0.00 sec)

		
		

4.3.9. INFORMATION_SCHEMA.partitions 表

		
SELECT
  partition_name part,
  partition_expression expr,
  partition_description descr,
  table_rows
FROM
  INFORMATION_SCHEMA.partitions
WHERE
  TABLE_SCHEMA = schema()
  AND TABLE_NAME='employees';
		
		
		
select
  partition_name part,
  partition_expression expr,
  from_seconds(partition_description) descr,
  table_rows
FROM
INFORMATION_SCHEMA.partitions
WHERE
    TABLE_SCHEMA = 'test'
    AND TABLE_NAME='t2';
		
		

4.3.10. 分区数据操作

指定分区查询

SELECT * FROM employees PARTITION (p0, p2);

SELECT count(1) FROM employees PARTITION (p0);
SELECT count(1) FROM employees PARTITION (p0, p2);
SELECT count(1) FROM employees PARTITION (p0, p2, p1);
		

删除分区中的记录

DELETE FROM employees PARTITION (p0, p1);		
		

更新指定分区

UPDATE employees PARTITION (p0) SET store_id = 2 WHERE fname = 'Jill';		
		

指定分区连表查询

SELECT e.id, s.city FROM employees AS e JOIN stores PARTITION (p1) AS s ...;		
		

将某个表迁移到分区上

ALTER TABLE employees EXCHANGE PARTITION p0 WITH TABLE employees2;		
		





原文出处:Netkiller 系列 手札
本文作者:陈景峯
转载请与作者联系,同时请务必标明文章原始出处和作者信息及本声明。

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
算法 C++ 容器
【C++算法】is_partitioned、partition_copy和partition_point
【C++算法】is_partitioned、partition_copy和partition_point
|
存储
LeetCode 132. Palindrome Partitioning II
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。 返回符合要求的最少分割次数。
57 0
LeetCode 132. Palindrome Partitioning II
LeetCode 131. Palindrome Partitioning
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。 返回 s 所有可能的分割方案。
56 0
LeetCode 131. Palindrome Partitioning
|
算法 数据挖掘 开发者
Partitioning Methods|学习笔记(一)
快速学习 Partitioning Methods
143 0
Partitioning  Methods|学习笔记(一)
|
算法 数据挖掘 开发者
Partitioning Methods|学习笔记(二)
快速学习 Partitioning Methods
74 0
Partitioning Methods|学习笔记(二)
|
算法
每个 Partition
每个 Partition
69 0
|
SQL 人工智能 分布式计算
Incorporating Partitioning and Parallel Plans into the SCOPE optimizer
这篇paper中讨论是的Microsoft的cosmos DB,其本身是一个海量数据的大规模计算平台,有些类似hadoop,使用的是一种类SQL的脚本,叫做SCOPE,针对SCOPE的优化器负责生成最优的执行计划。在1998年前后Microsoft基本丢弃了Sybase原有的优化器实现,并由Graefe主导重写了基于cascades的优化器。因此和Microsoft所有其他的数据库产品一样,SCOPE optimizer也是基于Cascades的transformation-based的优化器。
304 0
Incorporating Partitioning and Parallel Plans into the SCOPE optimizer
|
MySQL 关系型数据库