[LeetCode] Ternary Expression Parser 三元表达式解析器

简介:

Given a string representing arbitrarily nested ternary expressions, calculate the result of the expression. You can always assume that the given expression is valid and only consists of digits 0-9?:T and F (T and Frepresent True and False respectively).

Note:

  1. The length of the given string is ≤ 10000.
  2. Each number will contain only one digit.
  3. The conditional expressions group right-to-left (as usual in most languages).
  4. The condition will always be either T or F. That is, the condition will never be a digit.
  5. The result of the expression will always evaluate to either a digit 0-9T or F.

Example 1:

Input: "T?2:3"
Output: "2"
Explanation: If true, then result is 2; otherwise result is 3.

Example 2:

Input: "F?1:T?4:5"
Output: "4"
Explanation: The conditional expressions group right-to-left. Using parenthesis, it is read/evaluated as:

             "(F ? 1 : (T ? 4 : 5))"                   "(F ? 1 : (T ? 4 : 5))"
          -> "(F ? 1 : 4)"                 or       -> "(T ? 4 : 5)"
          -> "4"                                    -> "4"

Example 3:

Input: "T?T?F:5:3"

Output: "F"

Explanation: The conditional expressions group right-to-left. Using parenthesis, it is read/evaluated as:

             "(T ? (T ? F : 5) : 3)"                   "(T ? (T ? F : 5) : 3)"
          -> "(T ? F : 3)"                 or       -> "(T ? F : 5)"
          -> "F"                                    -> "F"

这道题让我们解析一个三元表达式,我们通过分析题目中的例子可以知道,如果有多个三元表达式嵌套的情况出现,那么我们的做法是从右边开始找到第一个问号,然后先处理这个三元表达式,然后再一步一步向左推,这也符合程序是从右向左执行的特点。那么我最先想到的方法是用用一个stack来记录所有问号的位置,然后根据此问号的位置,取出当前的三元表达式,调用一个eval函数来分析得到结果,能这样做的原因是题目中限定了三元表达式每一部分只有一个字符,而且需要分析的三元表达式是合法的,然后我们把分析后的结果和前后两段拼接成一个新的字符串,继续处理之前一个问号,这样当所有问号处理完成后,所剩的一个字符就是答案,参见代码如下:

解法一:

class Solution {
public:
    string parseTernary(string expression) {
        string res = expression;
        stack<int> s;
        for (int i = 0; i < expression.size(); ++i) {
            if (expression[i] == '?') s.push(i);
        }
        while (!s.empty()) {
            int t = s.top(); s.pop();
            res = res.substr(0, t - 1) + eval(res.substr(t - 1, 5)) + res.substr(t + 4);
        }
        return res;
    }
    string eval(string str) {
        if (str.size() != 5) return "";
        return str[0] == 'T' ? str.substr(2, 1) : str.substr(4);
    }
};

下面这种方法也是利用栈stack的思想,但是不同之处在于不是存问号的位置,而是存所有的字符,将原数组从后往前遍历,将遍历到的字符都压入栈中,我们检测如果栈首元素是问号,说明我们当前遍历到的字符是T或F,然后我们移除问号,再取出第一部分,再移除冒号,再取出第二部分,我们根据当前字符来判断是放哪一部分进栈,这样遍历完成后,所有问号都处理完了,剩下的栈顶元素即为所求:

解法二:

class Solution {
public:
    string parseTernary(string expression) {
        stack<char> s;
        for (int i = expression.size() - 1; i >= 0; --i) {
            char c = expression[i];
            if (!s.empty() && s.top() == '?') {
                s.pop();
                char first = s.top(); s.pop();
                s.pop();
                char second = s.top(); s.pop();
                s.push(c == 'T' ? first : second);
            } else {
                s.push(c);
            }
        }
        return string(1, s.top());
    }
};

下面这种方法更加简洁,没有用到栈,但是用到了STL的内置函数find_last_of,用于查找字符串中最后一个目前字符串出现的位置,这里我们找最后一个问号出现的位置,刚好就是最右边的问号,我们进行跟解法一类似的处理,拼接字符串,循环处理,参见代码如下:

解法三:

class Solution {
public:
    string parseTernary(string expression) {
        string res = expression;
        while (res.size() > 1) {
            int i = res.find_last_of("?");
            res = res.substr(0, i - 1) + string(1, res[i - 1] == 'T' ? res[i + 1] : res[i + 3]) + res.substr(i + 4);
        }
        return res;
    }
};

本文转自博客园Grandyang的博客,原文链接: 三元表达式解析器[LeetCode] Ternary Expression Parser,如需转载请自行联系原博主。

相关文章
|
9月前
|
算法 Go 索引
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
404 15
|
3月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
9月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
594 90
|
8月前
|
存储 算法 Go
【LeetCode 热题100】17:电话号码的字母组合(详细解析)(Go语言版)
LeetCode 17题解题思路采用回溯算法,通过递归构建所有可能的组合。关键点包括:每位数字对应多个字母,依次尝试;递归构建下一个字符;递归出口为组合长度等于输入数字长度。Go语言实现中,使用map存储数字到字母的映射,通过回溯函数递归生成组合。时间复杂度为O(3^n * 4^m),空间复杂度为O(n)。类似题目包括括号生成、组合、全排列等。掌握回溯法的核心思想,能够解决多种排列组合问题。
361 11
|
8月前
|
Go
【LeetCode 热题100】155:最小栈(详细解析)(Go语言版)
本文详细解析了力扣热题155:最小栈的解题思路与实现方法。题目要求设计一个支持 push、核心思路是使用辅助栈法,通过两个栈(主栈和辅助栈)来维护当前栈中的最小值。具体操作包括:push 时同步更新辅助栈,pop 时检查是否需要弹出辅助栈的栈顶,getMin 时直接返回辅助栈的栈顶。文章还提供了 Go 语言的实现代码,并对复杂度进行了分析。此外,还介绍了单栈 + 差值记录法的进阶思路,并总结了常见易错点,如 pop 操作时忘记同步弹出辅助栈等。
295 6
|
8月前
|
Go 索引
【LeetCode 热题100】739:每日温度(详细解析)(Go语言版)
这篇文章详细解析了 LeetCode 第 739 题“每日温度”,探讨了如何通过单调栈高效解决问题。题目要求根据每日温度数组,计算出等待更高温度的天数。文中推荐使用单调递减栈,时间复杂度为 O(n),优于暴力解法的 O(n²)。通过实例模拟和代码实现(如 Go 语言版本),清晰展示了栈的操作逻辑。此外,还提供了思维拓展及相关题目推荐,帮助深入理解单调栈的应用场景。
345 6
|
9月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
487 10
|
9月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
588 9
|
9月前
|
算法 Go
【LeetCode 热题100】73:矩阵置零(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 73——矩阵置零问题,提供两种解法:一是使用额外标记数组,时间复杂度为 O(m * n),空间复杂度为 O(m + n);二是优化后的原地标记方法,利用矩阵的第一行和第一列记录需要置零的信息,将空间复杂度降低到 O(1)。文章通过清晰的代码示例与复杂度分析,帮助理解“原地操作”及空间优化技巧,并推荐相关练习题以巩固矩阵操作能力。适合刷题提升算法思维!
312 9
|
9月前
|
算法 Go
【LeetCode 热题100】23:合并 K 个升序链表(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 23——合并 K 个升序链表的两种解法:优先队列(最小堆)和分治合并。题目要求将多个已排序链表合并为一个升序链表。最小堆方法通过维护节点优先级快速选择最小值,;分治合并则采用归并思想两两合并链表。文章提供了 Go 语言实现代码,并对比分析两种方法的适用场景,帮助读者深入理解链表操作与算法设计。
348 10

推荐镜像

更多
  • DNS