Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
求二叉树是否平衡,根据题目中的定义,高度平衡二叉树是每一个节点的两个字数的深度差不能超过1,那么我们肯定需要一个求各个点深度的函数,然后对每个节点的两个子树来比较深度差,时间复杂度为O(NlgN),代码如下:
解法一:
public: bool isBalanced(TreeNode *root) { if (!root) return true; if (abs(getDepth(root->left) - getDepth(root->right)) > 1) return false; return isBalanced(root->left) && isBalanced(root->right); } int getDepth(TreeNode *root) { if (!root) return 0; return 1 + max(getDepth(root->left), getDepth(root->right)); } };
上面那个方法正确但不是很高效,因为每一个点都会被上面的点计算深度时访问一次,我们可以进行优化。方法是如果我们发现子树不平衡,则不计算具体的深度,而是直接返回-1。那么优化后的方法为:对于每一个节点,我们通过checkDepth方法递归获得左右子树的深度,如果子树是平衡的,则返回真实的深度,若不平衡,直接返回-1,此方法时间复杂度O(N),空间复杂度O(H),参见代码如下:
解法二:
public: bool isBalanced(TreeNode *root) { if (checkDepth(root) == -1) return false; else return true; } int checkDepth(TreeNode *root) { if (!root) return 0; int left = checkDepth(root->left); if (left == -1) return -1; int right = checkDepth(root->right); if (right == -1) return -1; int diff = abs(left - right); if (diff > 1) return -1; else return 1 + max(left, right); } };
本文转自博客园Grandyang的博客,原文链接:[LeetCode] Balanced Binary Tree 平衡二叉树
,如需转载请自行联系原博主。