[LeetCode] Minimum Moves to Equal Array Elements II 最少移动次数使数组元素相等之二

简介:

Given a non-empty integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.

You may assume the array's length is at most 10,000.

Example:

Input:
[1,2,3]
Output:
2
Explanation:
Only two moves are needed (remember each move increments or decrements one element):
[1,2,3]  =>  [2,2,3]  =>  [2,2,2]

这道题是之前那道Minimum Moves to Equal Array Elements的拓展,现在我们可以每次对任意一个数字加1或者减1,让我们用最少的次数让数组所有值相等。一般来说这种题目是不能用暴力方法算出所有情况,因为OJ一般是不会答应的。那么这道题是否像上面一道题一样,有巧妙的方法呢?答案是肯定的。下面这种解法实际上利用了之前一道题Best Meeting Point的思想,是不感觉很amazing,看似完全不相干的两道题,居然有着某种内部联系。我们首先给数组排序,那么我们最终需要变成的相等的数字就是中间的数,如果数组有奇数个,那么就是最中间的那个数字;如果是偶数个,那么就是中间两个数的区间中的任意一个数字。而两端的数字变成中间的一个数字需要的步数实际上就是两端数字的距离,讲到这里发现是不是就和这道题Best Meeting Point的思路是一样了。那么我们就两对两对的累加它们的差值就可以了,参见代码如下:

 解法一:

class Solution {
public:
    int minMoves2(vector<int>& nums) {
        int res = 0, i = 0, j = (int)nums.size() - 1;
        sort(nums.begin(), nums.end());
        while (i < j) {
            res += nums[j--] - nums[i++];
        }
        return res;
    }
};

既然有了上面的分析,我们知道实际上最后相等的数字就是数组的最中间的那个数字,那么我们在给数组排序后,直接利用坐标定位到中间的数字,然后算数组中每个数组与其的差的绝对值累加即可,参见代码如下:

解法二:

class Solution {
public:
    int minMoves2(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int res = 0, mid = nums[nums.size() / 2];
        for (int num : nums) {
            res += abs(num - mid);
        }
        return res;
    }
};

上面的两种方法都给整个数组排序了,时间复杂度是O(nlgn),其实我们并不需要给所有的数字排序,我们只关系最中间的数字,那么这个stl中自带的函数nth_element就可以完美的发挥其作用了,我们只要给出我们想要数字的位置,它就能在O(n)的时间内返回正确的数字,然后算数组中每个数组与其的差的绝对值累加即可,参见代码如下:

解法三:

class Solution {
public:
    int minMoves2(vector<int>& nums) {
        int res = 0, n = nums.size(), mid = n / 2;
        nth_element(nums.begin(), nums.begin() + mid, nums.end());
        for (int i = 0; i < n; ++i) {
            res += abs(nums[i] - nums[mid]);
        }
        return res;
    }
};

下面这种方法是改进版的暴力破解法,它遍历了所有的数字,让每个数字都当作最后相等的值,然后算法出来总步数,每次和res比较,留下较小的。而这种方法叼就叼在它在O(1)的时间内完成了步数统计,那么这样整个遍历下来也只是O(n)的时间,不过由于还是要给数组排序,所以整体的时间复杂度是O(nlgn),这已经能保证可以通过OJ啦。那么我们来看看如何快速计算总步数,首先我们给数组排序,我们假设中间某个位置有个数字k,那么此时数组就是:nums[0], nums[1], ..., k, ..., nums[n - 1], 如果i为数字k在数组中的坐标,那么有k = nums[i],那么总步数为:

Y = k - nums[0] + k - nums[1] + ... + k - nums[i - 1] + nums[i] - k + nums[i + 1] - k + ... + nums[n - 1] - k

   = i * k - (nums[0] + nums[1] + ... + nums[i - 1]) + (nums[i] + nums[i + 1] + ... + nums[n - 1]) - (n - i) * k

   = 2 * i * k - n * k + sum - 2 * curSum

那么我们只要算出sum和curSum就可以快速得到总步数了,数组之和可以通过遍历数组计算出来,curSum可以在遍历的过程中累加,那么我们就可以算出总步数,然后每次更新结果res了,参见代码如下:

解法四:

class Solution {
public:
    int minMoves2(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        long long sum = accumulate(nums.begin(), nums.end(), 0);
        long long res = LONG_MAX, curSum = 0;
        int n = nums.size();
        for (int i = 0; i < n; ++i) {
            long long k = nums[i];
            curSum += k;
            res = min(res, 2 * k * (i + 1) - n * k + sum - 2 * curSum);
        }
        return res;
    }
};

 本文转自博客园Grandyang的博客,原文链接:最少移动次数使数组元素相等之二[LeetCode] Minimum Moves to Equal Array Elements II ,如需转载请自行联系原博主。

相关文章
|
8月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
482 90
|
5月前
|
测试技术 PHP 开发者
PHP 数组查找:为什么 `isset()` 比 `in_array()` 快得多?
PHP 数组查找:为什么 `isset()` 比 `in_array()` 快得多?
|
6月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
251 1
|
9月前
|
人工智能 Java
Java 中数组Array和列表List的转换
本文介绍了数组与列表之间的相互转换方法,主要包括三部分:1)使用`Collections.addAll()`方法将数组转为列表,适用于引用类型,效率较高;2)通过`new ArrayList&lt;&gt;()`构造器结合`Arrays.asList()`实现类似功能;3)利用JDK8的`Stream`流式计算,支持基本数据类型数组的转换。此外,还详细讲解了列表转数组的方法,如借助`Stream`实现不同类型数组间的转换,并附带代码示例与执行结果,帮助读者深入理解两种数据结构的互转技巧。
590 1
Java 中数组Array和列表List的转换
|
9月前
|
JavaScript 前端开发 API
JavaScript中通过array.map()实现数据转换、创建派生数组、异步数据流处理、复杂API请求、DOM操作、搜索和过滤等,array.map()的使用详解(附实际应用代码)
array.map()可以用来数据转换、创建派生数组、应用函数、链式调用、异步数据流处理、复杂API请求梳理、提供DOM操作、用来搜索和过滤等,比for好用太多了,主要是写法简单,并且非常直观,并且能提升代码的可读性,也就提升了Long Term代码的可维护性。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
移动开发 运维 供应链
通过array.some()实现权限检查、表单验证、库存管理、内容审查和数据处理;js数组元素检查的方法,some()的使用详解,array.some与array.every的区别(附实际应用代码)
array.some()可以用来权限检查、表单验证、库存管理、内容审查和数据处理等数据校验工作,核心在于利用其短路机制,速度更快,节约性能。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
供应链 JavaScript 前端开发
通过array.every()实现数据验证、权限检查和一致性检查;js数组元素检查的方法,every()的使用详解,array.some与array.every的区别(附实际应用代码)
array.every()可以用来数据验证、权限检查、一致性检查等数据校验工作,核心在于利用其短路机制,速度更快,节约性能。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
Web App开发 存储 前端开发
别再用双层遍历循环来做新旧数组对比,寻找新增元素了!使用array.includes和Set来提升代码可读性
这类问题的重点在于能不能突破基础思路,突破基础思路是从程序员入门变成中级甚至高级的第一步,如果所有需求都通过最基础的业务逻辑来做,是得不到成长的。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9月前
|
数据采集 JavaScript 前端开发
JavaScript中通过array.filter()实现数组的数据筛选、数据清洗和链式调用,JS中数组过滤器的使用详解(附实际应用代码)
用array.filter()来实现数据筛选、数据清洗和链式调用,相对于for循环更加清晰,语义化强,能显著提升代码的可读性和可维护性。博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
12月前
|
存储 Go 索引
go语言中的数组(Array)
go语言中的数组(Array)
244 67

热门文章

最新文章