TF-IDF与余弦相似性的应用(二):找出相似文章

简介:


转自:http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html

上一次,我用 TF-IDF 算法自动提取关键词。

今天,我们再来研究另一个相关的问题。有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章。比如,”Google 新闻”在主新闻下方,还提供多条相似的新闻。

为了找出相似的文章,需要用到“余弦相似性”(cosine similiarity)。下面,我举一个例子来说明,什么是”余弦相似性”。

为了简单起见,我们先从句子着手。

句子A:我喜欢看电视,不喜欢看电影。

句子B:我不喜欢看电视,也不喜欢看电影。

请问怎样才能计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词。

句子A:我/喜欢/看/电视,不/喜欢/看/电影。

句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

第二步,列出所有的词。

我,喜欢,看,电视,电影,不,也。

第三步,计算词频。

句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。

句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。

第四步,写出词频向量。

句子A:[1, 2, 2, 1, 1, 1, 0]

句子B:[1, 2, 2, 1, 1, 2, 1]

到这里,问题就变成了如何计算这两个向量的相似程度。

我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为 0 度,意味着方向相同、线段重合;如果夹角为 90 度,意味着形成直角,方向完全不相似;如果夹角为 180 度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

假定a向量是[x1, y1],b向量是[x2, y2],那么可以将余弦定理改写成下面的形式:

数学家已经证明,余弦的这种计算方法对n维向量也成立。假定A和B是两个n维向量,A是 [A1, A2, ..., An] ,B是 [B1, B2, ..., Bn] ,则A与B的夹角θ的余弦等于:

使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦。

余弦值越接近1,就表明夹角越接近 0 度,也就是两个向量越相似,这就叫”余弦相似性”。所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为 20.3 度。

由此,我们就得到了”找出相似文章”的一种算法:

(1)使用 TF-IDF 算法,找出两篇文章的关键词;

(2)每篇文章各取出若干个关键词(比如 20 个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);

(3)生成两篇文章各自的词频向量;

(4)计算两个向量的余弦相似度,值越大就表示越相似。

“余弦相似度”是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。

下一次,我想谈谈如何在词频统计的基础上,自动生成一篇文章的摘要。


==============================================================================
本文转自被遗忘的博客园博客,原文链接:http://www.cnblogs.com/rollenholt/articles/3381647.html,如需转载请自行联系原作者
相关文章
|
机器学习/深度学习 存储 人工智能
神经网络算法 —— 一文搞懂Transformer !!
神经网络算法 —— 一文搞懂Transformer !!
1775 0
|
存储 搜索推荐 算法
Python中的桶排序算法
总结而言,桶排序是一个非常高效的排序算法,尤其适用于数据分布均匀的情况。正确实现和使用桶排序可以在特定情况下获得极高的排序速度。
130 0
TF-IDF及相似度计算
TF-IDF:衡量某个词对文章的重要性由TF和IDF组成 TF:词频(因素:某词在同一文章中出现次数) IDF:反文档频率(因素:某词是否在不同文章中出现) TF-IDF = TF*IDF TF :一个单词在一篇文章出现次数越多越重要 IDF: 每篇文章都出现的单词(如的,你,我,他) ,越不重要
703 0
TF-IDF及相似度计算
|
4天前
|
云安全 监控 安全
|
2天前
|
存储 机器学习/深度学习 人工智能
打破硬件壁垒!煎饺App:强悍AI语音工具,为何是豆包AI手机平替?
直接上干货!3000 字以上长文,细节拉满,把核心功能、使用技巧和实测结论全给大家摆明白,读完你就知道这款 “安卓机通用 AI 语音工具"——煎饺App它为何能打破硬件壁垒?它接下来,咱们就深度拆解煎饺 App—— 先给大家扒清楚它的使用逻辑,附上“操作演示”和“🚀快速上手不踩坑 : 4 条核心操作干货(必看)”,跟着走零基础也能快速上手;后续再用真实实测数据,正面硬刚煎饺 App的语音助手口令效果——创建京东「牛奶自动下单神器」口令 ,从修改口令、识别准确率到场景实用性,逐一测试不掺水,最后,再和豆包 AI 手机语音助手的普通版——豆包App对比测试下,简单地谈谈煎饺App的能力边界在哪?
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1162 7
|
11天前
|
机器学习/深度学习 人工智能 数据可视化
1秒生图!6B参数如何“以小博大”生成超真实图像?
Z-Image是6B参数开源图像生成模型,仅需16GB显存即可生成媲美百亿级模型的超真实图像,支持中英双语文本渲染与智能编辑,登顶Hugging Face趋势榜,首日下载破50万。
734 42
|
15天前
|
人工智能 Java API
Java 正式进入 Agentic AI 时代:Spring AI Alibaba 1.1 发布背后的技术演进
Spring AI Alibaba 1.1 正式发布,提供极简方式构建企业级AI智能体。基于ReactAgent核心,支持多智能体协作、上下文工程与生产级管控,助力开发者快速打造可靠、可扩展的智能应用。
1176 41
|
15天前
|
人工智能 前端开发 算法
大厂CIO独家分享:AI如何重塑开发者未来十年
在 AI 时代,若你还在紧盯代码量、执着于全栈工程师的招聘,或者仅凭技术贡献率来评判价值,执着于业务提效的比例而忽略产研价值,你很可能已经被所谓的“常识”困住了脚步。
942 78
大厂CIO独家分享:AI如何重塑开发者未来十年