52.6. ALL / Any

简介:

NOT IN 与 <> ALL 两个语句是相同的:

		
SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);
		
		

IN 与 "=ANY" 两个语句是一样的:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN    (SELECT s1 FROM t2);
		

例 52.1. SQL ANY example

			
select * from members where id = any(select members_id from accounts where id < 100);
			
			





原文出处:Netkiller 系列 手札
本文作者:陈景峯
转载请与作者联系,同时请务必标明文章原始出处和作者信息及本声明。

目录
相关文章
|
3天前
|
弹性计算 API Python
如何利用通义千问查询阿里云资源
本篇文章详细阐述了如何利用LangChain框架构建一款Python工具,该工具能够调用通义千问大模型来查询和获取阿里云资源信息。
|
3天前
|
存储 JSON BI
友盟+Hologres:千亿级多维分析平台建设实践
Hologres 在友盟+统计分析、营销等多个产品线使用,很好地满足了用户行为分析、人群圈选与洞察场景的多维度分析、灵活下钻、快速人群预估和圈选等分析需求,提供客户更流畅的数据查询和分析体验。
|
3天前
|
监控 Cloud Native 测试技术
PTS 3.0:开启智能化的压测瓶颈分析
PTS 3.0:开启智能化的压测瓶颈分析
124747 2
|
3天前
|
SQL 数据采集 JSON
弱结构化日志 Flink SQL 怎么写?SLS SPL 来帮忙
弱结构化日志 Flink SQL 怎么写?SLS SPL 来帮忙
123296 2
|
5天前
|
存储 运维 监控
飞书深诺基于Flink+Hudi+Hologres的实时数据湖建设实践
通过对各个业务线实时需求的调研了解到,当前实时数据处理场景是各个业务线基于Java服务独自处理的。各个业务线实时能力不能复用且存在计算资源的扩展性问题,而且实时处理的时效已不能满足业务需求。鉴于当前大数据团队数据架构主要解决离线场景,无法承接更多实时业务,因此我们需要重新设计整合,从架构合理性,复用性以及开发运维成本出发,建设一套通用的大数据实时数仓链路。本次实时数仓建设将以游戏运营业务为典型场景进行方案设计,综合业务时效性、资源成本和数仓开发运维成本等考虑,我们最终决定基于Flink + Hudi + Hologres来构建阿里云云原生实时湖仓,并在此文中探讨实时数据架构的具体落地实践。
飞书深诺基于Flink+Hudi+Hologres的实时数据湖建设实践
|
9天前
|
SQL 关系型数据库 分布式数据库
|
9天前
|
弹性计算 网络安全 数据安全/隐私保护
ECS热门应用 | 解决Guestosssh异常
通过ECS实例快速发现操作系统内部的问题,并给出对应的修复方案。
129095 4
|
10天前
|
存储 固态存储 Java
软硬协同设计下的飞天盘古,是如何降低存储系统开销的?
历经 15 载,如今的飞天盘古系统已迭代至第三代,数千万行代码和 1,000 余项专利,从大规模、到高性能、到高效能的分布式存储系统的演进,更高效地让数据中心成为一台计算机。
135854 25
软硬协同设计下的飞天盘古,是如何降低存储系统开销的?
|
9天前
|
机器学习/深度学习 消息中间件 算法
Flink ML的新特性解析与应用
本文整理自阿里巴巴算法专家赵伟波,在 Flink Forward Asia 2023 AI特征工程专场的分享。
128928 4
Flink ML的新特性解析与应用
|
10天前
|
消息中间件 存储 Kafka
Lindorm Ganos轨迹点快速聚合能力简介
本文介绍了Ganos时空数据库在Lindorm流引擎上的全新能力与最佳实践,帮助客户解决车辆网场景中轨迹点实时聚合生成轨迹线的能力。Lindorm Ganos实现了Lindorm宽表、流、计算等引擎在时空领域的打通,支持原生时空类型与多种时空算子,支持多种不同的时空索引,不仅可用于传统的周边查询,还面向了历史轨迹的查询分析、实时地理围栏查询、点面查询等更加复杂的业务需求。