大数据带来六种全新商业模式

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 人们认为“数据是新型石油”,一种需要企业加以利用和改进的天然资源。这是事实还是炒作?Mohamed Zaki解释说,虽然许多公司已经从大数据中获益,但这也提出了严峻的挑战。
人们认为“数据是新型石油”,一种需要企业加以利用和改进的天然资源。这是事实还是炒作?Mohamed Zaki解释说,虽然许多公司已经从大数据中获益,但这也提出了严峻的挑战。


政府机构已经宣布加快大数据研究,而且根据Gartner公司的调查,2013年64%的公司正在投资——或打算投资大数据技术。Gartner公司也指出虽然企业相信大数据的优势,许多公司也正在从大数据中获取利用价值。但问题是他们往往倾向于数据收集方面的技术,而没有思考大数据如何才能创造价值。
大数据正在为大型公司和小型企业创造价值。成熟企业在很多领域利用大数据技术提升他们的业务和服务,另一方面,初创企业也正在利用大数据开发许多创新产品和商业模式。

在剑桥服务联盟,一个制造部门的研究所,我们与众多行业中的杰出企业接触时,看到与大数据有关的重要机会和挑战。
以一家制造、销售、租赁其产品并提供保养和维修服务的公司为例。它的产品包括收集了大量数据的传感器,使公司能够进行远程监测并诊断问题。
如果该数据与现有的业务数据,先进的工程分析手段和前瞻性的商业情报相结合,该公司就可以提供一个“状态监测服务”,能够分析和预测设备故障。对于客户来说,意外的宕机就会成为过去,维修成本会降低和两次服务之间的间隔期也会延长。智能分析,甚至可以告诉企业如何更高效地使用设备。原始设备制造商 (OEM)和经销商认为这种方法是提高他们的配件和维修业务的新方式而且也能增加配件的销售。它也能加强与现有客户的关系,吸引需要保养维修服务的新客户。

在一个完全不同的领域,一场教育革命正在进行中。大数据正在巩固一种新的被称为“能力教育”的学习方式,这种教育模式正在美国的高校推广。一批高校利用大数据技术个性化地开发他们的课程,每个学生都可以随时随地学到他们喜欢的课程并取得进步。

以前的课程模式是,学生们必须在学年开始的时候到学校报到,不管他们的个人水平如何,他们都要努力学习课程直到毕业。在新的数据驱动模式下,大学将能够监控和衡量学生的表现,看看他们需要多长时间完成特定的课程任务,成绩如何。课程设计考虑到学生的喜好,他们的成绩和他们可能遇到的困难。对于学生来说,这是适合他们需求的一个更加灵活的学习方法,并让他们有机会更快地毕业。对于大学来说,这意味着提供更好的素质教育,提高学生的成绩,并能够更有效地安排他们的工作人员,符合他们的技能和利益。

为了获取有价值的大数据,企业必须能够捕捉,存储,分析,可视化和解释这些大数据。而这些步骤没有一个是简单的。
其中的一个主要障碍是缺乏“数据文化”,数据文化是指数据完全嵌入在组织思想和实践中。而且公司也面临着一系列数据管理和处理的挑战。
例如,状态监测服务依赖于卫星系统或数字电话系统的数据传输:有时这些技术根本没有覆盖。大多数组织都有大量的数据以不同的格式存储在不同的系统中:使这些数据汇集在一起非常困难。

在服务契约环境下,数据所有权是个大问题,客户认为数据是他们的,是因为他们的使用而产生的,而服务商认为数据是他们的,因为数据是由他们的系统进行处理的。

在复杂的数据景观方面,安全性——管理数据的访问以及创建强大的检查跟踪系统——也是一个重大的挑战,因为要符合数据保护法规。许多组织也缺乏数据技术,如数据和文本挖掘模型,其中包括统计建模,预测技术,预测模型和委托代理模型(或优化模型)。

一些成熟的企业可能会发现他们很难摆脱根深蒂固的做事方式,而初创企业却有能力创造新的商业模式。在剑桥服务联盟,我们了解到他们为了更好地了解大数据的商业模式,一直在用创新的方法经营。这个结果应该可以帮助不同规模的企业,了解大数据如何改变他们的业务,不仅仅针对初创企业。我们已经确定了六种不同类型的商业模式。

免费数据收集器和聚合器:社交数据流服务提供商Gnip公司,通过各种渠道收集数据,大部分都是免费的,然后对数据进行过滤和完善,并根据客户需要的格式向他们提供数据。

数据分析服务:这些公司通常为客户提供分析数据的服务,这些数据通常是由客户提供的。例如Sendify公司,为企业提供实时的调用者情报,所以当有电话打进时他们看到打电话的人的很多相关的附加信息,这会帮助企业增加他们的销售机会。

数据生成和分析:公司通过众包、智能手机或其他传感器生成自己的数据,他们也提供分析服务。这个例子包括GoSquaredMixpanel和Spinnakr公司,他们通过使用一个跟踪代码在他们客户的网站上收集数据,分析数据并使用web界面提供报告。

免费数据知识发现:这个模式是免费提供数据和分析。例如,Gild公司通过自动评估应聘者发布的代码并进行打分,来帮助企业招聘开发人员。
数据集成服务:这些公司从多个内部源获取数据并对数据进行汇总,然后通过一系列用户友好、通常是可视化界面,将结果反馈给用户。在教育领域,从多个教育项目和网站汇总的数据时刻帮助教师监控学生的表现。

多源数据混聚和分析:这些公司将客户提供的数据进行汇总,大多是免费的数据源,并对客户数据进行分析,以丰富或基准数据。例如welovroi是一个基于网络的数字营销公司,监控和分析工具能够使企业跟踪大量不同指标。它还能集成外部数据,并保证营销活动的成功的基准测试数据。
这告诉我们什么?敏捷和创新的初创企业正在创建全新的基于大数据的商业模式,并获得巨大的成功。这些模式激励更大的公司(中小企业和跨国企业)去考虑他们如何从数据中获取价值的新方法。

但这些成熟企业想要这样做的时候会面临重大的障碍,如果他们想要成功也需要颠覆目前的商业模式。世界经济引擎将转向状态监控服务,以教育领域为例,要提供一个完全创新的教学方法。如果当机会出现的时候,企业不能创新,那么他们会失去竞争优势,处于落后地位,只能去努力追赶他们的竞争对手。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
搜索推荐 大数据
哈佛商业评论:大数据的创业方向、商业模式与投资机会
       云计算和大数据将注定带来一次革命,无论是对社会、公司和个人来说,都是一次世界观的改变。技术和需求的双重推动,会让越来越多的政府机构、公司企业和个人意识到数据是巨大的经济资产,像货币或黄金一样,它将带来全新的创业方向、商业模式和投资机会。
1214 0
|
数据采集 大数据 数据挖掘
大数据变现的九种商业模式
如今,走到哪都在提大数据,我们周围无处不存在大数据的概念,那么究竟大数据如何转变成价值,如何实现其应有的功能,个人觉得下面这篇文章介绍的很好,转过来供大家分享: 在大数据成为趋势,成为国家战略的今天,如何最大限度发挥大数据的价值成为人们思考的问题。
1406 0
|
大数据 数据挖掘
大数据的商业模式
著名管理学大师彼得·德鲁克曾说过,当今企业间的竞争,不是产品的竞争,而是商业模式的竞争。Rappa(2004)认为,商业模式规定了公司在价值链中的位置,指导着公司如何赚取剩余价值;并指出商业模式明确了一个公司开展什么活动来创造价值,在价值链中如何选取上下游合作伙伴以及怎样与客户达成交易、为客户提供价值。
1413 0
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
5天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
50 7
|
5天前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
15 2
|
18天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
60 1