50.3. Partitioning

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介:
	
mysql> SHOW VARIABLES LIKE '%partition%';

+-------------------+-------+
| Variable_name     | Value |
+-------------------+-------+
| have_partitioning | YES   |
+-------------------+-------+
1 row in set (0.00 sec)
	
	

50.3.1. RANGE

18.5.1. Partitioning Keys, Primary Keys, and Unique Keys
This section discusses the relationship of partitioning keys with primary keys and unique keys. The rule governing this relationship can be expressed as follows: All columns used in the partitioning expression for a partitioned table must be part of every unique key that the table may have.

In other words, every unique key on the table must use every column in the table's partitioning expression. (This also includes the table's primary key, since it is by definition a unique key. This particular case is discussed later in this section.) For example, each of the following table creation statements is invalid:


SQL code:
mysql> create table tx (
    ->     id int not null ,
    ->     info_time date,
    ->     primary key(id,info_time)
    -> )
    -> PARTITION BY RANGE(info_time div 100)
    -> (
    ->     PARTITION p_2008_11 VALUES LESS THAN (200812),
    ->     PARTITION p_2008_12 VALUES LESS THAN (200901),
    ->     PARTITION p_2009_01 VALUES LESS THAN (200902),
    ->     PARTITION p_2009_02 VALUES LESS THAN (200903),
    ->     PARTITION p_2009_03 VALUES LESS THAN (200904),
    ->     PARTITION p_2009_04 VALUES LESS THAN (200905),
    ->     PARTITION p_catch_all VALUES LESS THAN MAXVALUE
    -> );
Query OK, 0 rows affected (0.17 sec)

mysql>
		
		
CREATE TABLE t1 (
    year_col  INT,
    some_data INT
)
PARTITION BY RANGE (year_col) (
    PARTITION p0 VALUES LESS THAN (1991),
    PARTITION p1 VALUES LESS THAN (1995),
    PARTITION p2 VALUES LESS THAN (1999),
    PARTITION p3 VALUES LESS THAN (2002),
    PARTITION p4 VALUES LESS THAN (2006),
    PARTITION p5 VALUES LESS THAN MAXVALUE
);
		
		

e.g.2

				
CREATE TABLE rc (
    a INT NOT NULL,
    b INT NOT NULL
)
PARTITION BY RANGE COLUMNS(a,b) (
    PARTITION p0 VALUES LESS THAN (10,5),
    PARTITION p1 VALUES LESS THAN (20,10),
    PARTITION p2 VALUES LESS THAN (MAXVALUE,15),
    PARTITION p3 VALUES LESS THAN (MAXVALUE,MAXVALUE)
);
				
		
		
CREATE TABLE part_tab
(
	c1 int default NULL,
	c2 varchar(30) default NULL,
	c3 date default NULL

) engine=myisam
PARTITION BY RANGE (year(c3)) (
      PARTITION p0 VALUES LESS THAN (2000) ,
      PARTITION p1 VALUES LESS THAN (2001) ,
      PARTITION p2 VALUES LESS THAN (2002) ,
      PARTITION p3 VALUES LESS THAN (2003) ,
      PARTITION p4 VALUES LESS THAN (2004) ,
      PARTITION p12 VALUES LESS THAN (2012),
      PARTITION p13 VALUES LESS THAN MAXVALUE
);
		
		

50.3.2. LIST

				
CREATE TABLE client_firms (
    id   INT,
    name VARCHAR(35)
)
PARTITION BY LIST (id) (
    PARTITION r0 VALUES IN (1, 5, 9, 13, 17, 21),
    PARTITION r1 VALUES IN (2, 6, 10, 14, 18, 22),
    PARTITION r2 VALUES IN (3, 7, 11, 15, 19, 23),
    PARTITION r3 VALUES IN (4, 8, 12, 16, 20, 24)
);
				
		

				
CREATE TABLE lc (
    a INT NULL,
    b INT NULL
)
PARTITION BY LIST COLUMNS(a,b) (
    PARTITION p0 VALUES IN( (0,0), (NULL,NULL) ),
    PARTITION p1 VALUES IN( (0,1), (0,2), (0,3), (1,1), (1,2) ),
    PARTITION p2 VALUES IN( (1,0), (2,0), (2,1), (3,0), (3,1) ),
    PARTITION p3 VALUES IN( (1,3), (2,2), (2,3), (3,2), (3,3) )
);
				
		

				
CREATE TABLE th (id INT, name VARCHAR(30), adate DATE)
PARTITION BY LIST(YEAR(adate))
(
  PARTITION p1999 VALUES IN (1995, 1999, 2003)
    DATA DIRECTORY = '/var/appdata/95/data'
    INDEX DIRECTORY = '/var/appdata/95/idx',
  PARTITION p2000 VALUES IN (1996, 2000, 2004)
    DATA DIRECTORY = '/var/appdata/96/data'
    INDEX DIRECTORY = '/var/appdata/96/idx',
  PARTITION p2001 VALUES IN (1997, 2001, 2005)
    DATA DIRECTORY = '/var/appdata/97/data'
    INDEX DIRECTORY = '/var/appdata/97/idx',
  PARTITION p2000 VALUES IN (1998, 2002, 2006)
    DATA DIRECTORY = '/var/appdata/98/data'
    INDEX DIRECTORY = '/var/appdata/98/idx'
);
				
		

50.3.3. HASH

		
CREATE TABLE `test` (
  `userid` int(10) unsigned NOT NULL auto_increment,
  `username` int(10) unsigned NOT NULL DEFAULT '0',
  `password` int(10) unsigned NOT NULL DEFAULT '0',

  primary key (`userid`),
  KEY `userid` (`username`)
) ENGINE=InnoDB
PARTITION BY HASH(userid)
PARTITIONS 8;
		
		

使用HASH (year(created)) 替代 RANGE(year(created))

		
CREATE TABLE stuff (
	id INT AUTO_INCREMENT,
	name varchar(50),
	password varchar(50),
	created DATE,
	PRIMARY KEY (id, created)
)
PARTITION BY RANGE(year(created)) (
	PARTITION p0 VALUES LESS THAN (2010),
	PARTITION p1 VALUES LESS THAN (2012),
	PARTITION p2 VALUES LESS THAN MAXVALUE
);

更好的方法

CREATE TABLE stuff (
	id INT AUTO_INCREMENT,
	name varchar(50),
	password varchar(50),
	created DATE,
	PRIMARY KEY (id, created)
)
PARTITION BY HASH (year(created)) PARTITIONS 10;

我们演示一下

mysql> CREATE TABLE stuff (
    -> id INT AUTO_INCREMENT,
    -> name varchar(50),
    -> password varchar(50),
    -> created DATE,
    -> PRIMARY KEY (id, created)
    -> )
    -> PARTITION BY HASH (year(created)) PARTITIONS 10;
Query OK, 0 rows affected (0.08 sec)


mysql> insert into stuff (name,password,created) values('neo','test','2010-10-1');
Query OK, 1 row affected (0.06 sec)

mysql> insert into stuff (name,password,created) values('neo1','test','2012-2-1');
Query OK, 1 row affected (0.00 sec)

mysql> insert into stuff (name,password,created) values('neo2','test','2012-3-5');
Query OK, 1 row affected (0.00 sec)

mysql> insert into stuff (name,password,created) values('neo4','test','2011-1-5');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT
    ->   partition_name part,
    ->   partition_expression expr,
    ->   partition_description descr,
    ->   table_rows
    -> FROM
    ->   INFORMATION_SCHEMA.partitions
    -> WHERE
    ->   TABLE_SCHEMA = schema()
    ->   AND TABLE_NAME='stuff';
+------+---------------+-------+------------+
| part | expr          | descr | table_rows |
+------+---------------+-------+------------+
| p0   | year(created) | NULL  |          1 |
| p1   | year(created) | NULL  |          1 |
| p2   | year(created) | NULL  |          2 |
| p3   | year(created) | NULL  |          0 |
| p4   | year(created) | NULL  |          0 |
| p5   | year(created) | NULL  |          0 |
| p6   | year(created) | NULL  |          0 |
| p7   | year(created) | NULL  |          0 |
| p8   | year(created) | NULL  |          0 |
| p9   | year(created) | NULL  |          0 |
+------+---------------+-------+------------+
10 rows in set (0.02 sec)

mysql> EXPLAIN PARTITIONS SELECT * FROM stuff WHERE created='2011-01-05'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: stuff
   partitions: p1
         type: system
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 1
        Extra:
1 row in set (0.08 sec)

mysql> EXPLAIN PARTITIONS SELECT * FROM stuff WHERE created='2012-03-05'\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: stuff
   partitions: p2
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 2
        Extra: Using where
1 row in set (0.00 sec)

		
		

50.3.3.1. LINEAR HASH

CREATE TABLE employees (
    id INT NOT NULL,
    fname VARCHAR(30),
    lname VARCHAR(30),
    hired DATE NOT NULL DEFAULT '1970-01-01',
    separated DATE NOT NULL DEFAULT '9999-12-31',
    job_code INT,
    store_id INT
)
PARTITION BY LINEAR HASH( YEAR(hired) )
PARTITIONS 4;
			

50.3.4. KEY分区

按照KEY进行分区类似于按照HASH分区,除了HASH分区使用的用户定义的表达式,而KEY分区的 哈希函数是由MySQL 服务器提供。MySQL 簇(Cluster)使用函数MD5()来实现KEY分区;

CREATE TABLE tk (
    col1 INT NOT NULL,
    col2 CHAR(5),
    col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;
		

50.3.5. Subpartitioning

CREATE TABLE ts (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( TO_DAYS(purchased) )
    SUBPARTITIONS 2 (
        PARTITION p0 VALUES LESS THAN (1990),
        PARTITION p1 VALUES LESS THAN (2000),
        PARTITION p2 VALUES LESS THAN MAXVALUE
    );

CREATE TABLE ts1 (id INT, purchased DATE)
    PARTITION BY RANGE( YEAR(purchased) )
    SUBPARTITION BY HASH( MONTH(purchased) )
    SUBPARTITIONS 2 (
        PARTITION p0 VALUES LESS THAN (1990),
        PARTITION p1 VALUES LESS THAN (2000),
        PARTITION p2 VALUES LESS THAN MAXVALUE
    );
		

50.3.6. 分区管理

50.3.6.1. 新增分区

mysql 5.5+

为已经存在表添加分区

ALTER TABLE tbl_name  ADD PARTITION PARTITIONS 6;
			

新增 RANGE分区

ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (100,200,300,400)
                    DATA DIRECTORY = '/data/category'
                    INDEX DIRECTORY = '/data/category');
			

新增 LIST分区

			
CREATE TABLE expenses (
  expense_date DATE NOT NULL,
  category VARCHAR(30),
  amount DECIMAL (10,3)
);

ALTER TABLE expenses
PARTITION BY LIST COLUMNS (category)
(
  PARTITION p01 VALUES IN ( 'lodging', 'food'),
  PARTITION p02 VALUES IN ( 'flights', 'ground transportation'),
  PARTITION p03 VALUES IN ( 'leisure', 'customer entertainment'),
  PARTITION p04 VALUES IN ( 'communications'),
  PARTITION p05 VALUES IN ( 'fees')
);
			
			

新增 HASH分区

CREATE TABLE t1 (
    id INT,
    year_col INT
);

ALTER TABLE t1
    PARTITION BY HASH(id)
    PARTITIONS 8;
			
			
/* 在MySQL 5.1中*/
CREATE TABLE t2
(
  dt DATE
)
PARTITION BY RANGE (TO_DAYS(dt))
(
  PARTITION p01 VALUES LESS THAN (TO_DAYS('2007-01-01')),
  PARTITION p02 VALUES LESS THAN (TO_DAYS('2008-01-01')),
  PARTITION p03 VALUES LESS THAN (TO_DAYS('2009-01-01')),
  PARTITION p04 VALUES LESS THAN (MAXVALUE));

SHOW CREATE TABLE t2 \G
*************************** 1. row ***************************
       Table: t2
Create Table: CREATE TABLE `t2` (
  `dt` date DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
/*!50100 PARTITION BY RANGE (TO_DAYS(dt))
(PARTITION p01 VALUES LESS THAN (733042) ENGINE = MyISAM,
 PARTITION p02 VALUES LESS THAN (733407) ENGINE = MyISAM,
 PARTITION p03 VALUES LESS THAN (733773) ENGINE = MyISAM,
 PARTITION p04 VALUES LESS THAN MAXVALUE ENGINE = MyISAM) */



 /*在MySQL 5.5中*/
CREATE TABLE t2
(
  dt DATE
)
PARTITION BY RANGE COLUMNS (dt)
(
  PARTITION p01 VALUES LESS THAN ('2007-01-01'),
  PARTITION p02 VALUES LESS THAN ('2008-01-01'),
  PARTITION p03 VALUES LESS THAN ('2009-01-01'),
  PARTITION p04 VALUES LESS THAN (MAXVALUE));

SHOW CREATE TABLE t2 \G
*************************** 1. row ***************************
       Table: t2
Create Table: CREATE TABLE `t2` (
  `dt` date DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
/*!50500 PARTITION BY RANGE  COLUMNS(dt)
(PARTITION p01 VALUES LESS THAN ('2007-01-01') ENGINE = MyISAM,
 PARTITION p02 VALUES LESS THAN ('2008-01-01') ENGINE = MyISAM,
 PARTITION p03 VALUES LESS THAN ('2009-01-01') ENGINE = MyISAM,
 PARTITION p04 VALUES LESS THAN (MAXVALUE) ENGINE = MyISAM) */
			
			

50.3.6.2. 删除分区

删除分区 p0

ALERT TABLE users DROP PARTITION p0;
			

50.3.6.3. 重建分区

使用 REORGANIZE 重建分区。

RANGE 分区重建
ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000));

将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。

LIST 分区重建
ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));
将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。

HASH/KEY 分区重建
ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2;
分区的数量改为2,
注意:在这里数量只能减少不能增加。想要增加可以用 ADD PARTITION 方法
			

调整HASH/KEY分区数量,将分区总数扩展到8个。

ALTER TABLE users ADD PARTITION PARTITIONS 8;
			

50.3.6.4. 分区维护

重建分区: 这和先删除保存在分区中的所有记录,然后重新插入它们,具有同样的效果。它可用于整理分区碎片。

示例:

ALTER TABLE t1 REBUILD PARTITION (p0, p1);
·         优化分区:如果从分区中删除了大量的行,或者对一个带有可变长度的行(也就是说,有VARCHAR,BLOB,或TEXT类型的列)作了许多修改,可以使用“ALTER TABLE ... OPTIMIZE PARTITION”来收回没有使用的空间,并整理分区数据文件的碎片。

示例:

ALTER TABLE t1 OPTIMIZE PARTITION (p0, p1);
在一个给定的分区表上使用“OPTIMIZE PARTITION”等同于在那个分区上运行CHECK PARTITION,ANALYZE PARTITION,和REPAIR PARTITION。

·         分析分区:读取并保存分区的键分布。

示例:

ALTER TABLE t1 ANALYZE PARTITION (p3);
·         修补分区: 修补被破坏的分区。

示例:

ALTER TABLE t1 REPAIR PARTITION (p0,p1);
·         检查分区: 可以使用几乎与对非分区表使用CHECK TABLE 相同的方式检查分区。

示例:

ALTER TABLE trb3 CHECK PARTITION (p1);
			

50.3.7. EXPLAIN PARTITIONS

EXPLAIN PARTITIONS

		
mysql> EXPLAIN PARTITIONS SELECT * FROM users\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: users
   partitions: p0,p1,p2,p3,p4,p5,p6
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 7
        Extra:
1 row in set (0.03 sec)

mysql> EXPLAIN PARTITIONS SELECT * FROM users WHERE id < 5\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: users
   partitions: p0,p1,p2,p3,p4,p5,p6
         type: range
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 4
          ref: NULL
         rows: 7
        Extra: Using where
1 row in set (0.00 sec)
		
		

50.3.8. SHOW CREATE TABLE

SHOW CREATE TABLE

		
mysql> SHOW CREATE TABLE users\G
*************************** 1. row ***************************
       Table: users
Create Table: CREATE TABLE `users` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `username` varchar(20) NOT NULL DEFAULT '',
  `birthday` datetime DEFAULT NULL,
  PRIMARY KEY (`id`,`username`)
) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=latin1
/*!50100 PARTITION BY KEY (id,username)
PARTITIONS 7 */
1 row in set (0.00 sec)

		
		

50.3.9. INFORMATION_SCHEMA.partitions 表

		
SELECT
  partition_name part,
  partition_expression expr,
  partition_description descr,
  table_rows
FROM
  INFORMATION_SCHEMA.partitions
WHERE
  TABLE_SCHEMA = schema()
  AND TABLE_NAME='employees';
		
		
		
select
  partition_name part,
  partition_expression expr,
  from_seconds(partition_description) descr,
  table_rows
FROM
INFORMATION_SCHEMA.partitions
WHERE
    TABLE_SCHEMA = 'test'
    AND TABLE_NAME='t2';
		
		

50.3.10. 分区数据操作

指定分区查询

SELECT * FROM employees PARTITION (p0, p2);

SELECT count(1) FROM employees PARTITION (p0);
SELECT count(1) FROM employees PARTITION (p0, p2);
SELECT count(1) FROM employees PARTITION (p0, p2, p1);
		

删除分区中的记录

DELETE FROM employees PARTITION (p0, p1);		
		

更新指定分区

UPDATE employees PARTITION (p0) SET store_id = 2 WHERE fname = 'Jill';		
		

指定分区连表查询

SELECT e.id, s.city FROM employees AS e JOIN stores PARTITION (p1) AS s ...;		
		

将某个表迁移到分区上

ALTER TABLE employees EXCHANGE PARTITION p0 WITH TABLE employees2;		
		





原文出处:Netkiller 系列 手札
本文作者:陈景峯
转载请与作者联系,同时请务必标明文章原始出处和作者信息及本声明。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
人工智能 自然语言处理 安全
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
CodeAct是一种先进的AI辅助系统范式,深度融合自然语言处理与代码执行能力。通过自定义代码执行代理,开发者可精准控制代码生成、执行及管理流程。本文基于LlamaIndex框架构建CodeAct Agent,解析其技术架构,包括代码执行环境、工作流定义系统、提示工程机制和状态管理系统。同时探讨安全性考量及应用场景,如软件开发、数据科学和教育领域。未来发展方向涵盖更精细的代码生成、多语言支持及更强的安全隔离机制,推动AI辅助编程边界拓展。
101 3
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
|
3月前
|
JavaScript 前端开发
开发和内网部署正常,反向代理后出现404和图片加载失败的解决方案;部署到公网后报错404;部署到公网后图片加载出错;动态渲染获取图片失败
博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
4月前
|
机器学习/深度学习 人工智能 算法
DeepSeek-R1论文细节时间线梳理
中国AI初创公司DeepSeek发布了大语言模型R1,该模型在推理任务上媲美OpenAI的ChatGPT,且训练成本仅600万美元。DeepSeek由杭州对冲基金High-Flyer支持,总部位于杭州和北京。R1基于V3-Base,使用监督微调和强化学习训练,针对硬件限制进行了优化。模型在多语言处理、推理风格等方面表现出色,但存在一些局限性,如法语表现欠佳、偶尔切换语言等。DeepSeek的创新技术包括FP8量化、多头潜在注意力和蒸馏方法,引发了广泛关注和讨论。开源社区正积极尝试复现其结果,但面临训练数据和代码未公开的挑战。DeepSeek的低成本高效训练策略为AI领域带来了新的思考方向。
359 2
|
9月前
|
存储 监控 Linux
监控Linux服务器
详细介绍了如何监控Linux服务器,包括监控CPU、内存、磁盘存储和带宽的使用情况,以及使用各种系统监控工具如vmstat、iostat、sar、top和dstat来分析系统性能,并推荐了一些开源监控系统。
139 0
监控Linux服务器
|
程序员
有趣的网站分享——pornhub风格生成器
有趣的网站分享——pornhub风格生成器
613 0
|
中间件 Go 数据格式
gin框架中间件深度解析
gin框架中间件深度解析
410 43
gin框架中间件深度解析
|
机器学习/深度学习 运维 分布式计算
阿里云大数据ACA及ACP复习题(491~500)
本人备考阿里云大数据考试时自行收集准备的题库,纯手工整理的,因为是纯手工整理解析所以可能出现答案打错的情况,题库是能够覆盖到今年7月份,应该是目前最新的,发成文章希望大家能一起学习,不要花冤枉钱去买题库背了,也希望大家能够顺利通关ACA和ACP考试(自己整理解析也需要时间,可能有更新不及时的情况哈)
|
中间件 API Go
Gin增加超时控制中间件
Gin增加超时控制中间件
zookeeper中节点信息的查看方式
zookeeper中节点信息的查看方式
1030 0
|
Shell Linux 数据安全/隐私保护
linux创建、删除及切换用户
Ctrl+Alt+T 进入到命令行,输入 sudo useradd -m [username] 创建名为[username]的用户 -m:自动建立用户的登入目录
338 0