[LeetCode] The Maze II 迷宫之二

简介:

There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction.

Given the ball's start position, the destination and the maze, find the shortest distance for the ball to stop at the destination. The distance is defined by the number of empty spaces traveled by the ball from the start position (excluded) to the destination (included). If the ball cannot stop at the destination, return -1.

The maze is represented by a binary 2D array. 1 means the wall and 0 means the empty space. You may assume that the borders of the maze are all walls. The start and destination coordinates are represented by row and column indexes.

Example 1

Input 1: a maze represented by a 2D array

0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0

Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (4, 4)

Output: 12
Explanation: One shortest way is : left -> down -> left -> down -> right -> down -> right.
             The total distance is 1 + 1 + 3 + 1 + 2 + 2 + 2 = 12.

 

Example 2

Input 1: a maze represented by a 2D array

0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0

Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (3, 2)

Output: -1
Explanation: There is no way for the ball to stop at the destination.

 

Note:

  1. There is only one ball and one destination in the maze.
  2. Both the ball and the destination exist on an empty space, and they will not be at the same position initially.
  3. The given maze does not contain border (like the red rectangle in the example pictures), but you could assume the border of the maze are all walls.
  4. The maze contains at least 2 empty spaces, and both the width and height of the maze won't exceed 100.

这道题是之前那道The Maze的拓展,那道题只让我们判断能不能在终点位置停下,而这道题让我们求出到达终点的最少步数。其实本质都是一样的,难点还是在于对于一滚到底的实现方法,唯一不同的是,这里我们用一个二位数组dists,其中dists[i][j]表示到达(i,j)这个位置时需要的最小步数,我们都初始化为整型最大值,在后在遍历的过程中不断用较小值来更新每个位置的步数值,最后我们来看终点位置的步数值,如果还是整型最大值的话,说明没法在终点处停下来,返回-1,否则就返回步数值。注意在压入栈的时候,我们对x和y进行了判断,只有当其不是终点的时候才压入栈,这样是做了优化,因为如果小球已经滚到终点了,我们就不要让它再滚了,就不把终点位置压入栈,免得它还滚,参见代码如下:

解法一:

public:
    int shortestDistance(vector<vector<int>>& maze, vector<int>& start, vector<int>& destination) {
        int m = maze.size(), n = maze[0].size();
        vector<vector<int>> dists(m, vector<int>(n, INT_MAX));
        vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
        queue<pair<int, int>> q;
        q.push({start[0], start[1]});
        dists[start[0]][start[1]] = 0;
        while (!q.empty()) {
            auto t = q.front(); q.pop();
            for (auto d : dirs) {
                int x = t.first, y = t.second, dist = dists[t.first][t.second];
                while (x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == 0) {
                    x += d[0];
                    y += d[1];
                    ++dist;
                }
                x -= d[0];
                y -= d[1];
                --dist;
                if (dists[x][y] > dist) {
                    dists[x][y] = dist;
                    if (x != destination[0] || y != destination[1]) q.push({x, y});
                }
            }
        }
        int res = dists[destination[0]][destination[1]];
        return (res == INT_MAX) ? -1 : res;
    }
};

下面这种写法是DFS的解法,可以看出来思路基本上跟上面的解法没有啥区别,写法上稍有不同,参见代码如下:

解法二:

public:
    vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
    int shortestDistance(vector<vector<int>>& maze, vector<int>& start, vector<int>& destination) {
        int m = maze.size(), n = maze[0].size();
        vector<vector<int>> dists(m, vector<int>(n, INT_MAX));
        dists[start[0]][start[1]] = 0;
        helper(maze, start[0], start[1], destination, dists);
        int res = dists[destination[0]][destination[1]];
        return (res == INT_MAX) ? -1 : res;
    }
    void helper(vector<vector<int>>& maze, int i, int j, vector<int>& destination, vector<vector<int>>& dists) {
        if (i == destination[0] && j == destination[1]) return;
        int m = maze.size(), n = maze[0].size();
        for (auto d : dirs) {
            int x = i, y = j, dist = dists[x][y];
            while (x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == 0) {
                x += d[0];
                y += d[1];
                ++dist;
            }
            x -= d[0];
            y -= d[1];
            --dist;
            if (dists[x][y] > dist) {
                dists[x][y] = dist;
                helper(maze, x, y, destination, dists);
            }
        }
    }
};

https://discuss.leetcode.com/topic/78924/java-accepted-dfs

https://discuss.leetcode.com/topic/77561/simple-c-bfs-solution

https://discuss.leetcode.com/topic/77543/simple-c-bfs-using-queue

https://discuss.leetcode.com/topic/77472/similar-to-the-maze-easy-understanding-java-bfs-solution

本文转自博客园Grandyang,原文链接:[LeetCode] The Maze II 迷宫之二

,如需转载请自行联系原博主。

相关文章
|
6月前
|
机器学习/深度学习 存储
leetcode-1036:逃离大迷宫
leetcode-1036:逃离大迷宫
33 0
|
存储
Leetcode-每日一题1210. 穿过迷宫的最少移动次数(BFS)
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_46618592/article/details/128890280?spm=1001.2014.3001.5501
114 0
Leetcode-每日一题1210. 穿过迷宫的最少移动次数(BFS)
|
机器学习/深度学习
力扣-1036. 逃离大迷宫
在一个 106 x 106 的网格中,每个网格上方格的坐标为 (x, y) 。 现在从源方格 source = [sx, sy] 开始出发,意图赶往目标方格 target = [tx, ty] 。数组 blocked 是封锁的方格列表,其中每个 blocked[i] = [xi, yi] 表示坐标为 (xi, yi) 的方格是禁止通行的。 每次移动,都可以走到网格中在四个方向上相邻的方格,只要该方格 不 在给出的封锁列表 blocked 上。同时,不允许走出网格。 只有在可以通过一系列的移动从源方格 source 到达目标方格 target 时才返回 true。否则,返回 false。
97 0
力扣-1036. 逃离大迷宫
|
机器学习/深度学习 C++
【力扣·每日一题】1036. 逃离大迷宫 (C++ bfs 思维)
【力扣·每日一题】1036. 逃离大迷宫 (C++ bfs 思维)
96 0
【力扣·每日一题】1036. 逃离大迷宫 (C++ bfs 思维)
|
算法 定位技术 索引
[leetcode/lintcode 题解] 阿里算法面试真题:迷宫
[leetcode/lintcode 题解] 阿里算法面试真题:迷宫
[leetcode/lintcode 题解] 阿里算法面试真题:迷宫
|
2月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
3月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
54 6
|
3月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
107 2