详解斯坦纳点及斯坦纳树及模版归纳总结

简介: ①什么是斯坦纳点?   假设原来已经给定了个点,库朗等指出需要引进的点数至多为,此种点称为斯坦纳点。过每一斯坦纳点,至多有三条边通过。若为三条边,则它们两两交成120°角;若为两条边,则此斯坦纳点必为某一已给定的点,且此两条边交成的角必大于或等于120°。

什么是斯坦纳点?

  假设原来已经给定了个点,库朗等指出需要引进的点数至多为,此种点称为斯坦纳点。过每一斯坦纳点,至多有三条边通过。若为三条边,则它们两两交成120°角;若为两条边,则此斯坦纳点必为某一已给定的点,且此两条边交成的角必大于或等于120°。其中最小的网络称为已给定点的集合的最小斯坦纳树,记作SMT。若此SMT的斯坦纳点中有等于给定点的点,则称此SMT为退化的,此给定点称为退化点。

构造方法:

 

 

已知B,C,D,E可知B点为转轴线段BC绕B顺时针旋转60度得到正三角形,再以顶点F为转轴,FD构成的线段逆时针旋转得到新的正三角形顶点G,劣弧DF上任意一点都能和D,F构成三个,相同的,劣弧CB上的点也是。
故将第四点E与G相连接在劣弧上得到一个交点,再由交点与F连接交劣弧CB于一点,即构成了非退化情况下的两斯坦纳点,枚举得到斯坦纳最小生成树,当与顶点连线不与劣弧有交点时则为该种结构的退化点情况.

什么是斯坦纳树?

       斯坦纳树问题是组合优化学科中的一个问题。将指定点集合中的所有点连通,且边权总和最小的生成树称为最小斯坦纳树(Minimal Steiner Tree),其实最小生成树是最小斯坦纳树的一种特殊情况。而斯坦纳树可以理解为使得指定集合中的点连通的树,但不一定最小。

如何求解最小斯坦纳树?

      可以用DP求解,dp[i][state]表示以i为根,指定集合中的点的连通状态为state的生成树的最小总权值。

      转移方程有两重:

      第一重,先通过连通状态的子集进行转移。

      dp[i][state]=min{ dp[i][subset1]+dp[i][subset2] } 

      枚举子集的技巧可以用 for(sub=(state-1)&state;sub;sub=(sub-1)&state)。

      第二重,在当前枚举的连通状态下,对该连通状态进行松弛操作。

      dp[i][state]=min{ dp[i][state], dp[j][state]+e[i][j] }

      为什么只需对该连通状态进行松弛?因为更后面的连通状态会由先前的连通状态通过第一重转移得到,所以无需对别的连通状态松弛。松弛操作用SPFA即可。

      复杂度 O(n*3^k+cE*2^k)

      c为SPFA复杂度中的常数,E为边的数量,但几乎达不到全部边的数量,甚至非常小。3^k来自于子集的转移sum{C(i,n)*2^i} (1<=i<=n),用二项式展开求一下和。

模版如下:

 1 /*
 2  *  Steiner Tree:求,使得指定K个点连通的生成树的最小总权值
 3  *  st[i] 表示顶点i的标记值,如果i是指定集合内第m(0<=m<K)个点,则st[i]=1<<m 
 4  *  endSt=1<<K
 5  *  dptree[i][state] 表示以i为根,连通状态为state的生成树值
 6  */
 7 #define CLR(x,a) memset(x,a,sizeof(x))
 8 
 9 int dptree[N][1<<K],st[N],endSt;
10 bool vis[N][1<<K];
11 queue<int> que;
12 
13 int input()
14 {
15    /*
16     *    输入,并且返回指定集合元素个数K
17     *    因为有时候元素个数需要通过输入数据处理出来,所以单独开个输入函数。
18     */
19 }
20 
21 void initSteinerTree()
22 {
23     CLR(dptree,-1);
24     CLR(st,0);
25     for(int i=1;i<=n;i++) CLR(vis[i],0);
26     endSt=1<<input();
27     for(int i=1;i<=n;i++)
28         dptree[i][st[i]]=0;
29 }
30 
31 void update(int &a,int x)
32 {
33     a=(a>x || a==-1)? x : a;
34 }
35 
36 void SPFA(int state)
37 {
38     while(!que.empty()){
39         int u=que.front();
40         que.pop();
41         vis[u][state]=false;
42         for(int i=p[u];i!=-1;i=e[i].next){
43             int v=e[i].vid;
44             if(dptree[v][st[v]|state]==-1 || 
45                 dptree[v][st[v]|state]>dptree[u][state]+e[i].w){
46 
47                 dptree[v][st[v]|state]=dptree[u][state]+e[i].w;
48                 if(st[v]|state!=state || vis[v][state]) 
49                     continue; //只更新当前连通状态
50                 vis[v][state]=true;
51                 que.push(v);
52             }
53         }
54     }
55 }
56 
57 void steinerTree()
58 {
59     for(int j=1;j<endSt;j++){
60         for(int i=1;i<=n;i++){
61             if(st[i] && (st[i]&j)==0) continue;
62             for(int sub=(j-1)&j;sub;sub=(sub-1)&j){
63                 int x=st[i]|sub,y=st[i]|(j-sub);
64                 if(dptree[i][x]!=-1 && dptree[i][y]!=-1)
65                     update(dptree[i][j],dptree[i][x]+dptree[i][y]);
66             }
67             if(dptree[i][j]!=-1) 
68                 que.push(i),vis[i][j]=true;
69         }
70         SPFA(j);
71     }
72 }

学习心得

  参考09年姜碧野神牛写的论文《SPFA的优化与应用》,里面提到了一道题——[WC2008]游览计划。这题让我立刻联想到了去年北京赛区的E题,差不多的模型,大概就是在一个图中求给定的k个点的斯坦纳生成树,给定点的个数k<=10。

       首先我们知道,最优解必然是一棵树,然后这棵树又是由若干棵子树合并成的,于是我们可以状态压缩,把k个节点的连通状态用一个二进制数j表示,dp[i][j]表示以i为根和对应状态为j的节点连通的子树的最小权值。有两种转移方法:
       枚举子树的形态:dp[ i ][ j ]=min{ dp[ i ][ j ],dp[ i ][ k ]+dp[ i ][ l ] },其中k和l是对j的一个划分。
       按照边进行松弛:dp[ i ][ j ]= min{ dp[ i ][ j ],dp[ i' ][ j ]+w[ i ][ i' ] },其中i和i'之间有边相连。
       对于第一种转移,我们直接枚举子集就行了。对于第二种转移,我们仔细观察可以发现这个方程和最短路的约束条件是很类似的,于是我们可以用spfa或者dij来进行状态转移。枚举子集的复杂度=n*sum{C(k,i)*2^i,0<i=k}=n*3^k,spfa的复杂度为n*2^k。所以总复杂度为O(n*3^k)。
       具体实现的时候我试了好几种不同的方法,一开始是直接把两种转移都看成图中的边,一遍spfa得出结果,大概如下所示:
 1 void spfa(){
 2     while(!Q.empty()){
 3         int x=Q.front()/10000,y=Q.front()%10000;
 4         in[x][y]=0;
 5         Q.pop();
 6         for(edge *i=Adj[x];i;i=i->nxt)       //对当前节点的每条边都进行松弛操作
 7             update(i->v,s[i->v]|y,d[x][y]+i->w);
 8         int t=nn-1-y;
 9         for(int i=t;i;i=(i-1)&t)            //枚举补集的所有子集,进行松弛操作
10             update(x,y|i,d[x][y]+d[x][i|s[x]]);
11     }
12 }

     这么做的复杂度是没有变的,但是常数非常大,hdu上跑了2500ms才过,仔细一想,我们发现第二松弛操作其实做了很多无用功,考虑能不能进行优化。

       第二种松弛操作非常的耗时间,所以我们就不把它加到spfa里面进行转移,直接在外面进行枚举,实现更新,避免大量的重复计算。先枚举连通性j,对于所有的1<=i<=n,我们先进行第一种转移,既枚举子集进行更新。如果dp[i][j]被更新了,我们就把它加到队列里,最后再进行spfa(),这样按j分层的进行转移,大概如下:
1 for(int y=0;y<nn;y++)                             //枚举连通性
2             for(int x=1;x<=n;x++){
3                 bool flag=0;
4                 for(int i=(y-1)&y;i;i=(i-1)&y)      //枚举所有子集,进行第一种转移
5                     flag|=update(x,y,d[x][i|s[x]]+d[x][(y-i)|s[x]]);
6                 if(flag) Q.push(x*10000+y);       //如果节点被更新则加入队列
7                 spfa();       //spfa进行第二种转移
8             }

       我本来以为这样会更快一些,结果跑了4700ms = =!顿时吐槽无力。

       为啥这样会更慢呢?我觉的大概是由于spfa()的次数过多,所以导致很多节点被重复的更新了很多次,又产生了大量了重复计算,所以反而更慢了。那么就没有什么好办法吗?仔细一想,我发现进行spfa的时候只需要对当前层的节点进行spfa就行了,不需要整个图完全松弛一遍,因为更高的层都可以通过枚举子集而变成若干个更低的层,这样一次spfa的复杂度一下就降了下来,变成了O(n)级别,大概如下:
1 for(edge *i=Adj[x];i;i=i->nxt)
2     if(update(i->v,y|s[i->v],d[x][y]+i->w)&&y==(y|s[i->v])&&!in[i->v][y]) //只把处于相同层的节点加到队列中
3         in[i->v][y]=1,Q.push(i->v*10000+y); 

这样修改以后效果果然非常明显,1000ms就AC了。但还是不够快,别人最快的能够达到500ms。于是我baidu了一下,发现他们没有用spfa!大概就是把第二种转移表示成了另外一种形式:

       dp[ i ][ j ]=min{ dp[ i ][ j ] , dp[ k ][ j ]+d[ k ][ i ] },其中d[ k ][ i ]表示k到i的最短路。
       
       很容易就能证明这样写方程也是对的,于是我们就可以先用floyed预处理出任意两点间的最短路,然后直接DP。这样做的总复杂度为O(n^3+n^2*2^k+n*3^k),这个复杂度并不比上面的方法低,但由于hdu4085的n比较小,所以这样写反而比上一种方法要快上不少。但对于  [WC2008]游览计划、ZOJ 3613 Wormhole Transport这两道题就不行了,n都达到了100甚至200的大小,这种方法要比前面一种慢。所以最后得出结论,还是前一种方法最稳定 = ^ =

更多习题分享

HDU 4085 Peach Blossom Spring
       11年北京赛区的E题,这题有点不同的地方在于,最后的答案可能是一个森林,所以我们要先求出斯坦纳树后进行DP。转移的时候要注意一点,只有人的个数和房子的个数相等的时候才算合法状态,所以我们要加一个check()函数进行检查。
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<vector>
 4 #include<queue>
 5 #include<algorithm>
 6 #define N 60
 7 #define INF 2000000
 8 using namespace std;
 9 struct edge{
10     int v,w;
11     edge *nxt;
12 }E[2009],*Adj[N],*cur;
13 int n,m,K,nn;
14 int s[N],in[N][1<<10];
15 int d[N][1<<10],dp[1<<10];
16 queue<int> Q;
17 void addedge(int u,int v,int w){cur->v=v,cur->w=w,cur->nxt=Adj[u],Adj[u]=cur++;}
18 bool check(int x){
19     int r=0;
20     for(int i=0;x;i++,x>>=1)
21         r+=(x&1)*(i<K?1:-1);
22     return r==0;
23 }
24 inline bool update(int x,int y,int w){
25     if(w<d[x][y]) return d[x][y]=w,true;
26     return false;
27 }
28 void spfa(){
29     while(!Q.empty()){
30         int x=Q.front()/10000,y=Q.front()%10000;
31         in[x][y]=0;
32         Q.pop();
33         for(edge *i=Adj[x];i;i=i->nxt)
34             if(update(i->v,y|s[i->v],d[x][y]+i->w)&&y==(y|s[i->v])&&!in[i->v][y])
35                 in[i->v][y]=1,Q.push(i->v*10000+y);
36                 
37     }
38 }
39 void init(){
40     cur=E;
41     memset(Adj,0,sizeof(Adj));
42     memset(s,0,sizeof(s));    
43     scanf("%d%d%d",&n,&m,&K);
44     nn=1<<(2*K);
45     for(int i=1;i<=n;i++)
46         for(int j=0;j<nn;j++)
47             d[i][j]=INF;
48     while(m--){
49         int u,v,w;
50         scanf("%d%d%d",&u,&v,&w);
51         addedge(u,v,w);
52         addedge(v,u,w);
53     }    
54     for(int i=1;i<=K;i++){
55         s[i]=1<<(i-1),d[i][s[i]]=0;                
56         s[n-i+1]=1<<(K+i-1),d[n-i+1][s[n-i+1]]=0;        
57     }    
58 }
59 int main(){    
60     int T;
61     scanf("%d",&T);
62     while(T--){        
63         init();
64         for(int y=0;y<nn;y++){
65             for(int x=1;x<=n;x++){                
66                 for(int i=(y-1)&y;i;i=(i-1)&y)
67                     d[x][y]=min(d[x][y],d[x][i|s[x]]+d[x][(y-i)|s[x]]);
68                 if(d[x][y]<INF) Q.push(x*10000+y),in[x][y]=1;
69             }
70             spfa();
71         }
72         for(int j=0;j<nn;j++){
73             dp[j]=INF;
74             for(int i=1;i<=n;i++) dp[j]=min(dp[j],d[i][j]);
75         }
76         for(int i=1;i<nn;i++)
77             if(check(i))
78                 for(int j=i&(i-1);j;j=(j-1)&i)
79                     if(check(j))
80                         dp[i]=min(dp[i],dp[j]+dp[i-j]);
81         if(dp[nn-1]>=INF) puts("No solution");
82         else printf("%d\n",dp[nn-1]);
83     }
84 }
[WC2008]游览计划
       这题要求一棵满足要求的斯坦纳树,基本上按照上面的做法写就行了,不过有一点恶心的就是要输出一组可行方案,所以DP的时候还要记录一下路径。
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<vector>
 4 #include<queue>
 5 #include<algorithm>
 6 #define INF 2000000
 7 #define N 10
 8 using namespace std;
 9 int dx[]={0,1,0,-1},
10     dy[]={1,0,-1,0};
11 int max_s,n,m;
12 int mat[N][N],st[N][N],vis[N][N],cnt;
13 int d[N][N][1<<N],pre[N][N][1<<N];
14 bool in[N][N][1<<N];
15 queue<int> Q;
16 void spfa(){
17     int x,y,s,tx,ty,ts;
18     while(!Q.empty()){
19         x=Q.front()/100000;
20         y=(Q.front()-x*100000)/10000;
21         s=Q.front()-x*100000-y*10000;
22         Q.pop();
23         in[x][y][s]=0;
24         for(int i=0;i<4;i++){
25             tx=x+dx[i],ty=y+dy[i];
26             if(tx>=n||ty>=m||tx<0||ty<0) continue;
27             ts=s|st[tx][ty];
28             if(d[x][y][s]+mat[tx][ty]<d[tx][ty][ts]){
29                 d[tx][ty][ts]=d[x][y][s]+mat[tx][ty];
30                 pre[tx][ty][ts]=x*100000+y*10000+s;
31                 if(!in[tx][ty][ts]&&s==ts) in[tx][ty][ts]=1,Q.push(tx*100000+ty*10000+ts);
32             }                
33         }
34     }
35 }
36 void go(int x,int y,int s){
37     vis[x][y]=1;
38     int t=pre[x][y][s],tx,ty,ts;
39     if(!t) return;
40     tx=t/100000;
41     ty=(t-tx*100000)/10000;
42     ts=t-tx*100000-ty*10000;
43     go(tx,ty,ts);
44     if(x==tx&&y==ty) go(x,y,(s-ts)|st[x][y]);
45 }
46 int main(){
47     //freopen("in.in","r",stdin);
48     scanf("%d%d",&n,&m);    
49     for(int i=0;i<n;i++)
50         for(int j=0;j<m;j++){
51             scanf("%d",&mat[i][j]);
52             if(!mat[i][j]) st[i][j]=1<<(cnt++);
53         }    
54     max_s=1<<cnt;
55     for(int i=0;i<n;i++)
56         for(int j=0;j<m;j++){
57             for(int k=0;k<max_s;k++)
58                 d[i][j][k]=INF;
59             if(st[i][j]) d[i][j][st[i][j]]=0;
60         }
61     for(int k=1;k<max_s;k++){
62         for(int i=0;i<n;i++)
63             for(int j=0;j<m;j++){
64                 if(st[i][j]&&!(st[i][j]&k)) continue;                
65                 for(int x=(k-1)&k;x;x=(x-1)&k){
66                     int t=d[i][j][x|st[i][j]]+d[i][j][(k-x)|st[i][j]]-mat[i][j];
67                     if(t<d[i][j][k]) d[i][j][k]=t,pre[i][j][k]=i*100000+j*10000+(x|st[i][j]);
68                 }
69                 if(d[i][j][k]<INF) Q.push(i*100000+j*10000+k),in[i][j][k]=1;
70             }
71         spfa();
72     }
73     for(int i=0;i<n;i++)
74         for(int j=0;j<m;j++)
75             if(st[i][j]){
76                 printf("%d\n",d[i][j][max_s-1]);
77                 go(i,j,max_s-1);
78                 for(int x=0;x<n;x++){
79                     for(int y=0;y<m;y++){
80                         if(st[x][y]) putchar('x');
81                         else if(vis[x][y]) putchar('o');
82                         else putchar('_');
83                     }
84                     puts("");
85                 }
86                 return 0;
87             }
88 }
ZOJ 3613 Wormhole Transport
       ZOJ Monthly, June 2012的C题。和HDU 4085差不多,有一点不同的是一个星球可能有很多个工厂,但是含有资源和含有工厂的星球个数都不超过4。还是先状态压缩,然后DP求出斯坦纳树。最优的方案有可能是森林,所以我们还要DP,dp[ i ]表示对应的工厂节点和资源节点组成的斯坦树森林的最优值。那么:
       dp[ i ]=min{ dp[ i ],dp[ j ]+dp[ k ] },其中j和k为i的一个划分。
       这里要注意一点,所有的状态i、j、k都要满足一个条件,就是连通的星球上工厂的个数要大于等于资源的个数,这样才是一个合法的状态,所以要加一个check()函数。最后再找到所含资源最多,花费最小的合法方案就是答案。
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<queue>
 4 #include<vector>
 5 #include<algorithm>
 6 #define N 209
 7 using namespace std;
 8 
 9 struct edge{int v,w;edge *nxt;}E[10009],*Adj[N],*cur;
10 int n,m,nn;
11 int d[N][1<<8],dp[1<<8];
12 bool in[N][1<<8];
13 int S[N],P[N],st[N],fac[4],cf,cs;
14 queue<int> Q;
15 void addedge(int u,int v,int w){cur->v=v,cur->w=w,cur->nxt=Adj[u],Adj[u]=cur++;}
16 void up(int &a,int b){if(a==-1||a>b) a=b;}
17 void spfa(){
18     while(!Q.empty()){
19         int x=Q.front()/1000,y=Q.front()%1000;
20         Q.pop();
21         in[x][y]=0;
22         for(edge *i=Adj[x];i;i=i->nxt)
23             if(d[i->v][y|st[i->v]]==-1||d[x][y]+i->w<d[i->v][y|st[i->v]]){
24                 d[i->v][y|st[i->v]]=d[x][y]+i->w;
25                 if(y==(y|st[i->v])&&!in[i->v][y]) in[i->v][y]=1,Q.push(i->v*1000+y);
26             }                
27     }
28 }
29 bool check(int x){
30     int t=0;
31     for(int i=0;x;i++,x>>=1)
32         t+=(x&1)*(i<cf?fac[i]:-1);
33     return t>=0;
34 }
35 int cnt(int x){
36     int r=0;
37     for(int i=0;x;i++,x>>=1)
38         r+=(x&1)*(i<cf?0:1);
39     return r;
40 }
41 int main(){
42     while(scanf("%d",&n)+1){
43         cur=E;
44         cf=cs=0;
45         memset(Adj,0,sizeof(Adj));
46         memset(st,0,sizeof(st));
47         memset(d,-1,sizeof(d));
48         memset(dp,-1,sizeof(dp));        
49         int ans=0;
50         for(int i=1;i<=n;i++){            
51             scanf("%d%d",P+i,S+i);
52             if(S[i]&&P[i]) P[i]--,S[i]=0,ans++;
53             if(P[i]) st[i]=1<<cf,fac[cf++]=P[i],d[i][st[i]]=0;
54         }        
55         for(int i=1;i<=n;i++)
56             if(S[i])
57                 st[i]=1<<(cf+cs++),d[i][st[i]]=0;
58         nn=1<<(cf+cs);
59         
60         scanf("%d",&m);
61         while(m--){
62             int u,v,w;
63             scanf("%d%d%d",&u,&v,&w);
64             addedge(u,v,w);
65             addedge(v,u,w);
66         }
67         
68         for(int y=1;y<nn;y++){
69             for(int x=1;x<=n;x++){
70                 if(st[x]&&!(st[x]&y)) continue;
71                 for(int i=(y-1)&y;i;i=(i-1)&y)
72                     if(d[x][i|st[x]]!=-1&&d[x][(y-i)|st[x]]!=-1)
73                         up(d[x][y],d[x][i|st[x]]+d[x][(y-i)|st[x]]);
74                 if(d[x][y]!=-1) Q.push(x*1000+y),in[x][y]=1;
75             }
76             spfa();
77         }
78         for(int i=1;i<=n;i++)
79             for(int j=0;j<nn;j++)
80                 if(d[i][j]!=-1)
81                     up(dp[j],d[i][j]);
82         int num=0,cost=0;
83         for(int i=1;i<nn;i++)
84             if(check(i)){
85                 for(int j=(i-1)&i;j;j=(j-1)&i)
86                     if(check(j)&&check(i-j)&&dp[j]!=-1&&dp[i-j]!=-1)
87                         up(dp[i],dp[j]+dp[i-j]);
88                 int t=cnt(i);
89                 if(dp[i]!=-1&&(t>num||(t==num&&dp[i]<cost)))
90                     num=t,cost=dp[i];
91             }
92         printf("%d %d\n",num+ans,cost);
93     }
94 }
目录
相关文章
|
6月前
|
SQL JavaScript 数据库
树层级处理上万条数据优化!
树层级处理上万条数据优化!
|
6天前
|
设计模式 算法 网络协议
15.模版模式设计思想
模版模式是一种行为设计模式,它定义了一个操作中的算法骨架,而将一些步骤延迟到子类中实现。这种方式让子类可以在不改变算法结构的情况下重新定义算法的某些特定步骤。文章详细介绍了模版模式的基础概念、应用场景、实现原理及优缺点,并通过具体案例深入解析了模版模式的使用方法。适合初学者和有一定经验的开发者深入学习。
21 4
|
C语言 C++ Windows
c语言知识点及思考4
c语言知识点及思考4
44 0
|
设计模式 算法 架构师
如何优化你的if-else?来试试“责任树模式”
写业务逻辑时,if-else 可能是最容易想到的逻辑方式了。然而大量堆砌的 if-else 毫无疑问将给代码维护带来巨大的困难。如何优化这些 if-else 呢?本文分享一种设计模式——责任树模式,通过将责任链与策略模式融合,成为一种广义的责任链模式,不仅可以完成任务的逐级委托,也可以在任一级选择不同的下游策略进行处理,并将责任树模式抽象出一个通用的框架。
如何优化你的if-else?来试试“责任树模式”
|
算法 前端开发 信息无障碍
语雀思维图子图嵌套的技术思考
语雀产品上决定做子图嵌套是在 2021 年 1 月底,回想起来,当时做出这个决定还是比较纠结的。因为,产品上本就不是想做 XMind,也不想被 XMind 牵着走,更不想背包袱(有了 XMind 的功能,也意味着有了它的包袱)。但无奈的是,在面对一些具体场景时,当时没找到更合适的做法。最终还是硬着头皮上了,好在最终结果上看,我们虽然沿着 XMind 的路径,但貌似走出了一条也许比 XMind 更宽广的道路。
语雀思维图子图嵌套的技术思考
|
存储 BI 数据处理
如何用报表工具实现树状层级结构的填报表
数据填报中,表头项如果是科目或者地区等有层级关系的维度数据,常常会希望表头能以树状形式展示,以便用户能更直观的理解填报业务,方便录入数据,点击 <a href="http://c.raqsoft.com.
1269 0
|
Web App开发 前端开发 API
剥开比原看代码08:比原的Dashboard是怎么做出来的?
作者:freewind 比原项目仓库: Github地址:https://github.com/Bytom/bytom Gitee地址:https://gitee.com/BytomBlockchain/bytom 在前面的几篇文章中,我们一直在研究如何与一个比原节点建立连接,并且从它那里请求区块数据。
1281 0
BCG项目树结构多选删除功能实现总结
1、设置多选风格 在OnCreate(LPCREATESTRUCT lpCreateStruct)函数中设置多选风格 DWORD dwExtendedStyle=m_wndFileView.
1261 0