[LeetCode] Binary Tree Tilt 二叉树的坡度

简介:

Given a binary tree, return the tilt of the whole tree.

The tilt of a tree node is defined as the absolute difference between the sum of all left subtree node values and the sum of all right subtree node values. Null node has tilt 0.

The tilt of the whole tree is defined as the sum of all nodes' tilt.

Example:

Input: 
         1
       /   \
      2     3
Output: 1
Explanation: 
Tilt of node 2 : 0
Tilt of node 3 : 0
Tilt of node 1 : |2-3| = 1
Tilt of binary tree : 0 + 0 + 1 = 1

Note:

  1. The sum of node values in any subtree won't exceed the range of 32-bit integer.
  2. All the tilt values won't exceed the range of 32-bit integer.

这道题让我们求二叉树的坡度,某个结点的坡度的定义为该结点的左子树之和与右子树之和的差的绝对值,这道题让我们求所有结点的坡度之和。我开始的想法就是老老实实的按定义去做,用先序遍历,对于每个遍历到的结点,先计算坡度,根据定义就是左子树之和与右子树之和的差的绝对值,然后返回的是当前结点的tilt加上对其左右子结点调用求坡度的递归函数即可。其中求子树之和用另外一个函数来求,也是用先序遍历来求结点之和,为了避免重复运算,这里用哈希表来保存已经算过的结点,参见代码如下:

解法一:

public:
    unordered_map<TreeNode*, int> m;
    int findTilt(TreeNode* root) {
        if (!root) return 0;
        int tilt = abs(getSum(root->left, m) - getSum(root->right, m));
        return tilt + findTilt(root->left) + findTilt(root->right);
    }
    int getSum(TreeNode* node, unordered_map<TreeNode*, int>& m) {
        if (!node) return 0;
        if (m.count(node)) return m[node];
        return m[node] = getSum(node->left, m) + getSum(node->right, m) + node->val;
    }
};

但是在论坛中看了大神们的帖子后,发现这道题最好的解法应该是用后序遍历来做,因为后序遍历的顺序是左-右-根,那么就会从叶结点开始处理,这样我们就能很方便的计算结点的累加和,同时也可以很容易的根据子树和来计算tilt,参见代码如下:

解法二:

public:
    int findTilt(TreeNode* root) {
        int res = 0;
        postorder(root, res);
        return res;
    }
    int postorder(TreeNode* node, int& res) {
        if (!node) return 0;
        int leftSum = postorder(node->left, res);
        int rightSum = postorder(node->right, res);
        res += abs(leftSum - rightSum);
        return leftSum + rightSum + node->val;
    }
};

参考资料:

https://discuss.leetcode.com/topic/87191/java-o-n-postorder-traversal

本文转自博客园Grandyang的博客,原文链接:[LeetCode] Binary Tree Tilt 二叉树的坡度

,如需转载请自行联系原博主。

相关文章
|
7月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
312 14
|
8月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
193 10
|
8月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
379 10
|
8月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
187 4
|
8月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
426 9
【LeetCode 43】236.二叉树的最近公共祖先
【LeetCode 43】236.二叉树的最近公共祖先
129 0
【LeetCode 38】617.合并二叉树
【LeetCode 38】617.合并二叉树
94 0
【LeetCode 37】106.从中序与后序遍历构造二叉树
【LeetCode 37】106.从中序与后序遍历构造二叉树
116 0
【LeetCode 34】257.二叉树的所有路径
【LeetCode 34】257.二叉树的所有路径
107 0
【LeetCode 32】111.二叉树的最小深度
【LeetCode 32】111.二叉树的最小深度
109 0

热门文章

最新文章