[Python]网络爬虫(二):利用urllib2通过指定的URL抓取网页内容

简介:

所谓网页抓取,就是把URL地址中指定的网络资源从网络流中读取出来,保存到本地。 
类似于使用程序模拟IE浏览器的功能,把URL作为HTTP请求的内容发送到服务器端, 然后读取服务器端的响应资源。


在Python中,我们使用urllib2这个组件来抓取网页。
urllib2是Python的一个获取URLs(Uniform Resource Locators)的组件。

它以urlopen函数的形式提供了一个非常简单的接口。

最简单的urllib2的应用代码只需要四行。

我们新建一个文件urllib2_test01.py来感受一下urllib2的作用:

 

[python]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. import urllib2  
  2. response = urllib2.urlopen('http://www.baidu.com/')  
  3. html = response.read()  
  4. print html  


按下F5可以看到运行的结果:

 


我们可以打开百度主页,右击,选择查看源代码(火狐OR谷歌浏览器均可),会发现也是完全一样的内容。

也就是说,上面这四行代码将我们访问百度时浏览器收到的代码们全部打印了出来。

这就是一个最简单的urllib2的例子。

 

除了"http:",URL同样可以使用"ftp:","file:"等等来替代。

HTTP是基于请求和应答机制的:

客户端提出请求,服务端提供应答。

 

urllib2用一个Request对象来映射你提出的HTTP请求。

在它最简单的使用形式中你将用你要请求的地址创建一个Request对象,

通过调用urlopen并传入Request对象,将返回一个相关请求response对象,

这个应答对象如同一个文件对象,所以你可以在Response中调用.read()。

我们新建一个文件urllib2_test02.py来感受一下:

 

[python]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. import urllib2    
  2. req = urllib2.Request('http://www.baidu.com')    
  3. response = urllib2.urlopen(req)    
  4. the_page = response.read()    
  5. print the_page  


可以看到输出的内容和test01是一样的。

 

urllib2使用相同的接口处理所有的URL头。例如你可以像下面那样创建一个ftp请求。

[python]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. req = urllib2.Request('ftp://example.com/')  

在HTTP请求时,允许你做额外的两件事。

 

1.发送data表单数据

这个内容相信做过Web端的都不会陌生,

有时候你希望发送一些数据到URL(通常URL与CGI[通用网关接口]脚本,或其他WEB应用程序挂接)。

在HTTP中,这个经常使用熟知的POST请求发送。

这个通常在你提交一个HTML表单时由你的浏览器来做。

并不是所有的POSTs都来源于表单,你能够使用POST提交任意的数据到你自己的程序。

一般的HTML表单,data需要编码成标准形式。然后做为data参数传到Request对象。

编码工作使用urllib的函数而非urllib2。

我们新建一个文件urllib2_test03.py来感受一下:

 

[python]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. import urllib    
  2. import urllib2    
  3.   
  4. url = 'http://www.someserver.com/register.cgi'    
  5.     
  6. values = {'name' : 'WHY',    
  7.           'location' : 'SDU',    
  8.           'language' : 'Python' }    
  9.   
  10. data = urllib.urlencode(values) # 编码工作  
  11. req = urllib2.Request(url, data)  # 发送请求同时传data表单  
  12. response = urllib2.urlopen(req)  #接受反馈的信息  
  13. the_page = response.read()  #读取反馈的内容  


如果没有传送data参数,urllib2使用GET方式的请求。

GET和POST请求的不同之处是POST请求通常有"副作用",

它们会由于某种途径改变系统状态(例如提交成堆垃圾到你的门口)。

Data同样可以通过在Get请求的URL本身上面编码来传送。

 

[python]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
  1. import urllib2    
  2. import urllib  
  3.   
  4. data = {}  
  5.   
  6. data['name'] = 'WHY'    
  7. data['location'] = 'SDU'    
  8. data['language'] = 'Python'  
  9.   
  10. url_values = urllib.urlencode(data)    
  11. print url_values  
  12.   
  13. name=Somebody+Here&language=Python&location=Northampton    
  14. url = 'http://www.example.com/example.cgi'    
  15. full_url = url + '?' + url_values  
  16.   
  17. data = urllib2.open(full_url)    


这样就实现了Data数据的Get传送。

2.设置Headers到http请求

有一些站点不喜欢被程序(非人为访问)访问,或者发送不同版本的内容到不同的浏览器。

默认的urllib2把自己作为“Python-urllib/x.y”(x和y是Python主版本和次版本号,例如Python-urllib/2.7),

这个身份可能会让站点迷惑,或者干脆不工作。

浏览器确认自己身份是通过User-Agent头,当你创建了一个请求对象,你可以给他一个包含头数据的字典。

下面的例子发送跟上面一样的内容,但把自身模拟成Internet Explorer。

(多谢大家的提醒,现在这个Demo已经不可用了,不过原理还是那样的)。

[python]  view plain copy 在CODE上查看代码片 派生到我的代码片
 
    1. import urllib    
    2. import urllib2    
    3.   
    4. url = 'http://www.someserver.com/cgi-bin/register.cgi'  
    5.   
    6. user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'    
    7. values = {'name' : 'WHY',    
    8.           'location' : 'SDU',    
    9.           'language' : 'Python' }    
    10.   
    11. headers = { 'User-Agent' : user_agent }    
    12. data = urllib.urlencode(values)    
    13. req = urllib2.Request(url, data, headers)    
    14. response = urllib2.urlopen(req)    
    15. the_page = response.read()   
本文转自博客园这知识天地的博客,原文链接:[ Python]网络爬虫(二):利用urllib2通过指定的URL抓取网页内容,如需转载请自行联系原博主。

相关文章
|
18天前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
48 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
3天前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
110 66
|
17天前
|
机器学习/深度学习 人工智能 算法
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
70 21
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
|
18天前
|
数据采集 存储 监控
网络爬虫的最佳实践:结合 set_time_limit() 与 setTrafficLimit() 抓取云盘数据
本文探讨了如何利用 PHP 的 `set_time_limit()` 与爬虫工具的 `setTrafficLimit()` 方法,结合多线程和代理 IP 技术,高效稳定地抓取百度云盘的公开资源。通过设置脚本执行时间和流量限制,使用多线程提高抓取效率,并通过代理 IP 防止 IP 封禁,确保长时间稳定运行。文章还提供了示例代码,展示了如何具体实现这一过程,并加入了数据分类统计功能以监控抓取效果。
52 16
网络爬虫的最佳实践:结合 set_time_limit() 与 setTrafficLimit() 抓取云盘数据
|
17天前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
60 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
2天前
|
数据采集 存储 JavaScript
构建你的第一个Python网络爬虫
【9月更文挑战第34天】在数字信息泛滥的时代,快速有效地获取和处理数据成为一项重要技能。本文将引导读者通过Python编写一个简易的网络爬虫,实现自动化地从网页上抓取数据。我们将一步步走过代码的编写过程,并探讨如何避免常见陷阱。无论你是编程新手还是想扩展你的技术工具箱,这篇文章都将为你提供有价值的指导。
35 18
|
17天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
44 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
13天前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
24 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
9天前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
38 5
|
12天前
|
数据采集 存储 JavaScript
构建您的第一个Python网络爬虫:抓取、解析与存储数据
【9月更文挑战第24天】在数字时代,数据是新的金矿。本文将引导您使用Python编写一个简单的网络爬虫,从互联网上自动抓取信息。我们将介绍如何使用requests库获取网页内容,BeautifulSoup进行HTML解析,以及如何将数据存储到文件或数据库中。无论您是数据分析师、研究人员还是对编程感兴趣的新手,这篇文章都将为您提供一个实用的入门指南。拿起键盘,让我们开始挖掘互联网的宝藏吧!
下一篇
无影云桌面