The recursive solution is trivial and I omit it here.
Iterative Solution using Stack (O(n) time and O(n) space):
1 /** 2 * Definition of TreeNode: 3 * class TreeNode { 4 * public: 5 * int val; 6 * TreeNode *left, *right; 7 * TreeNode(int val) { 8 * this->val = val; 9 * this->left = this->right = NULL; 10 * } 11 * } 12 */ 13 14 class Solution { 15 public: 16 /** 17 * @param root: The root of binary tree. 18 * @return: Preorder in vector which contains node values. 19 */ 20 vector<int> preorderTraversal(TreeNode *root) { 21 // write your code here 22 vector<int> nodes; 23 TreeNode* node = root; 24 stack<TreeNode*> right; 25 while (node || !right.empty()) { 26 if (node) { 27 nodes.push_back(node -> val); 28 if (node -> right) 29 right.push(node -> right); 30 node = node -> left; 31 } 32 else { 33 node = right.top(); 34 right.pop(); 35 } 36 } 37 return nodes; 38 } 39 };
Another more sophisticated solution using Morris Traversal (O(n) time and O(1) space):
1 /** 2 * Definition of TreeNode: 3 * class TreeNode { 4 * public: 5 * int val; 6 * TreeNode *left, *right; 7 * TreeNode(int val) { 8 * this->val = val; 9 * this->left = this->right = NULL; 10 * } 11 * } 12 */ 13 14 class Solution { 15 public: 16 /** 17 * @param root: The root of binary tree. 18 * @return: Preorder in vector which contains node values. 19 */ 20 vector<int> preorderTraversal(TreeNode *root) { 21 // write your code here 22 vector<int> nodes; 23 TreeNode* node = root; 24 while (node) { 25 if (node -> left) { 26 TreeNode* predecessor = node -> left; 27 while (predecessor -> right && predecessor -> right != node) 28 predecessor = predecessor -> right; 29 if (!(predecessor -> right)) { 30 nodes.push_back(node -> val); 31 predecessor -> right = node; 32 node = node -> left; 33 } 34 else { 35 predecessor -> right = NULL; 36 node = node -> right; 37 } 38 } 39 else { 40 nodes.push_back(node -> val); 41 node = node -> right; 42 } 43 } 44 return nodes; 45 } 46 };