[LeetCode] Best Meeting Point

简介: Problem Description: A group of two or more people wants to meet and minimize the total travel distance.

Problem Description:

A group of two or more people wants to meet and minimize the total travel distance. You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in the group. The distance is calculated using Manhattan Distance, where distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.

For example, given three people living at (0,0)(0,4), and (2,2):

1 - 0 - 0 - 0 - 1
|   |   |   |   |
0 - 0 - 0 - 0 - 0
|   |   |   |   |
0 - 0 - 1 - 0 - 0

The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6 is minimal. So return 6.

Hint:

    1. Try to solve it in one dimension first. How can this solution apply to the two dimension case?

Since the distance is computed using the Manhattan Distance, we can decompose this 2-d problem into two 1-d problems and combine (add) their solutions. In fact, the best meeting point is just the point that comprised by the two best meeting points in each dimension.

For the 1d case, the best meeting point is just the median point.

This post shares a nice Python code. However, translating it into C++ makes it so ugly...

 1 class Solution {
 2 public:
 3     int minTotalDistance(vector<vector<int>>& grid) {
 4         int m = grid.size(), n = grid[0].size();
 5         vector<int> ii, jj;
 6         for (int i = 0; i < m; i++) {
 7             for (int j = 0; j < n; j++) {
 8                 if (grid[i][j]) {
 9                     ii.push_back(i);
10                     jj.push_back(j);
11                 }
12             }
13         } 
14         sort(jj.begin(), jj.end());
15         int c = ii.size(), s = 0, io = ii[c/2], jo = jj[c/2];
16         for (int i : ii) s += abs(i - io);
17         for (int j : jj) s += abs(j - jo);
18         return s;
19     }
20 }; 

 

目录
相关文章
[LeetCode] Meeting Rooms
Problem Description: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],.
796 0
[LeetCode] Meeting Rooms II
Problem Description: Given an array of meeting time intervals consisting of start and end times [[s1,e1],[s2,e2],.
1013 0
|
4月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
5月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
69 6
|
5月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
137 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
75 1
|
4月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口