Python生成随机数的方法

简介:

这篇文章主要介绍了Python生成随机数的方法,有需要的朋友可以参考一下

如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与random模块中最常用的几个函数的关系,希望你会有所收获,以下就是这篇文章的介绍。

random.random()用于生成

用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。如果a > b,则生成随机数

1
n: a < =  n < =  b。如果 a <b, 则 b < =  n < =  a。
1
2
3
4
5
6
print  random.uniform( 10 , 20
print  random.uniform( 20 , 10
#----
#18.7356606526 
#12.5798298022 
random.randint

用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,Python生成随机数

1
2
3
print  random.randint( 12 , 20 ) #生成的随机数n: 12 <= n <= 20
print  random.randint( 20 , 20 ) #结果永远是20
#print random.randint(20, 10) #该语句是错误的。

下限必须小于上限。

random.randrange

从指定范围内,按指定基数递增的集合中 ,这篇文章就是对python生成随机数的应用程序的部分介绍。

随机整数:
>>> import random
>>> random.randint(0,99)
21

随机选取0到100间的偶数:
>>> import random
>>> random.randrange(0, 101, 2)
42

随机浮点数:
>>> import random
>>> random.random() 
0.85415370477785668
>>> random.uniform(1, 10)
5.4221167969800881

随机字符:
>>> import random
>>> random.choice('abcdefg&#%^*f')
'd'

多个字符中选取特定数量的字符:
>>> import random
random.sample('abcdefghij',3) 
['a', 'd', 'b']

多个字符中选取特定数量的字符组成新字符串:
>>> import random
>>> import string
>>> string.join(random.sample(['a','b','c','d','e','f','g','h','i','j'], 3)).r
eplace(" ","")
'fih'

随机选取字符串:
>>> import random
>>> random.choice ( ['apple', 'pear', 'peach', 'orange', 'lemon'] )
'lemon'

洗牌:
>>> import random
>>> items = [1, 2, 3, 4, 5, 6]
>>> random.shuffle(items)
>>> items
[3, 2, 5, 6, 4, 1]

本文转自博客园知识天地的博客,原文链接:Python生成随机数的方法,如需转载请自行联系原博主。

相关文章
|
11天前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
26天前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
32 10
|
28天前
|
人工智能 自然语言处理 算法
随机的暴力美学蒙特卡洛方法 | python小知识
蒙特卡洛方法是一种基于随机采样的计算算法,广泛应用于物理学、金融、工程等领域。它通过重复随机采样来解决复杂问题,尤其适用于难以用解析方法求解的情况。该方法起源于二战期间的曼哈顿计划,由斯坦尼斯拉夫·乌拉姆等人提出。核心思想是通过大量随机样本来近似真实结果,如估算π值的经典示例。蒙特卡洛树搜索(MCTS)是其高级应用,常用于游戏AI和决策优化。Python中可通过简单代码实现蒙特卡洛方法,展示其在文本生成等领域的潜力。随着计算能力提升,蒙特卡洛方法的应用范围不断扩大,成为处理不确定性和复杂系统的重要工具。
69 21
|
2月前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
2月前
|
JSON 安全 API
Python调用API接口的方法
Python调用API接口的方法
410 5
|
3月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
165 3
|
3月前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
216 4
|
3月前
|
算法 决策智能 Python
Python中解决TSP的方法
旅行商问题(TSP)是寻找最短路径,使旅行商能访问每个城市一次并返回起点的经典优化问题。本文介绍使用Python的`ortools`库解决TSP的方法,通过定义城市间的距离矩阵,调用库函数计算最优路径,并打印结果。此方法适用于小规模问题,对于大规模或特定需求,需深入了解算法原理及定制策略。
71 15
|
3月前
|
Python
Python编程中的魔法方法(Magic Methods)
【10月更文挑战第40天】在Python的世界中,魔法方法就像是隐藏在代码背后的神秘力量。它们通常以双下划线开头和结尾,比如 `__init__` 或 `__str__`。这些方法定义了对象的行为,当特定操作发生时自动调用。本文将揭开这些魔法方法的面纱,通过实际例子展示如何利用它们来增强你的类功能。
55 1
WK
|
3月前
|
Python
Python中format_map()方法
在Python中,`format_map()`方法用于使用字典格式化字符串。它接受一个字典作为参数,用字典中的键值对替换字符串中的占位符。此方法适用于从字典动态获取值的场景,尤其在处理大量替换值时更为清晰和方便。
WK
148 36

热门文章

最新文章

推荐镜像

更多