Kruskal算法

简介:

同样是求最小生成树,kruskal适合从边的角度出发,因此适合稀疏图。而prim算法从点的角度出发,适合稠密图。

时间复杂度为O(eloge)。因为外层循环了e(边数)层,而内部find循环了loge层。

算法首先把二维矩阵图转化为边图

复制代码
    for(i=0;i<MAXSIZE;i++){
        for(j=0;j<MAXSIZE;j++){
            flag = 1;
            if(i != j && num[i][j] != INF){
                    for(k=0;k<=max;k++){
                        if(g->e[k].begin == j && g->e[k].end == i){
                            flag = 0;
                            break;
                        }
                    }
                    if( flag ){
                        g->e[max].begin = i;
                        g->e[max].end = j;
                        g->e[max].length = num[i][j];
                        //printf("[%d]%d %d %d \n",max,g->e[max].begin,g->e[max].end,g->e[max].length);
                        max++;
                    }
            }
        }    
    }
复制代码

通过冒泡排序,排序边数组

复制代码
void bubblesort(Graph *g,int len){
    int i,j;
    for(i=0;        i < len;    i++){
        for(j = len-1;    j>i;    j--){
            if(g->e[j].length < g->e[i].length){
                swap(g,i,j);
            }
        }
    }
}

void swap(Graph *g,int i,int j){
    edge *pool = (edge *)malloc(sizeof(edge));
    
    pool->begin = g->e[j].begin;
    pool->end = g->e[j].end;
    pool->length = g->e[j].length;

    g->e[j].begin = g->e[i].begin;
    g->e[j].end = g->e[i].end;
    g->e[j].length = g->e[i].length;

    g->e[i].begin = pool->begin;
    g->e[i].end = pool->end;
    g->e[i].length = pool->length;

    free(pool);
}
复制代码

最后通过kruskal,从最小便开始,连接图。

复制代码
for(i=0;i<max;i++){
        n = find(parent,g->e[i].begin);
        m = find(parent,g->e[i].end);

        if(n != m){
            parent[n] = m;
            printf("[%d %d] %d \n",g->e[i].begin,g->e[i].end,g->e[i].length);
        }
    }
复制代码

全部代码

复制代码
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MAXSIZE 9
#define INF 65535

typedef struct edge{
    int begin;
    int end;
    int length;
}edge;
typedef struct Graph{
    edge e[20];
}Graph;
int num[MAXSIZE][MAXSIZE]={ 
                 0,  10, INF,INF,INF,11, INF,INF,INF,
                 10,      0,  18, INF,INF,INF,16, INF,12,
                 INF,INF,0,  22, INF,INF,INF,INF,8,
                 INF,INF,22, 0,  20, INF,INF,16, 21,
                 INF,INF,INF,20, 0,  26, INF,7,  INF,
                 11, INF,INF,INF,26, 0,  17, INF,INF,
                 INF,16, INF,INF,INF,17, 0,  19, INF,
                 INF,INF,INF,16, 7,  INF,19, 0,  INF,
                 INF,12, 8,  21, INF,INF,INF,INF,0};


void bubblesort(Graph *g,int len); 
void swap(Graph *g,int i,int j);
int find(int *p,int n);
int main(){
    int parent[20] = {0};
    int i,j,k,n,m;
    int max=0;
    int flag = 1;
    
    Graph *g = (Graph *)malloc(sizeof(Graph));

    for(i=0;i<MAXSIZE;i++){
        for(j=0;j<MAXSIZE;j++){
            flag = 1;
            if(i != j && num[i][j] != INF){
                    for(k=0;k<=max;k++){
                        if(g->e[k].begin == j && g->e[k].end == i){
                            flag = 0;
                            break;
                        }
                    }
                    if( flag ){
                        g->e[max].begin = i;
                        g->e[max].end = j;
                        g->e[max].length = num[i][j];
                        //printf("[%d]%d %d %d \n",max,g->e[max].begin,g->e[max].end,g->e[max].length);
                        max++;
                    }
            }
        }    
    }
    printf("\n");

    bubblesort(g,max);

    for(i=0;i<max;i++){
        printf("%d %d %d \n",g->e[i].begin,g->e[i].end,g->e[i].length);
    }
    
    

    for(i=0;i<max;i++){
        n = find(parent,g->e[i].begin);
        m = find(parent,g->e[i].end);

        if(n != m){
            parent[n] = m;
            printf("[%d %d] %d \n",g->e[i].begin,g->e[i].end,g->e[i].length);
        }
    }
    getchar();
    return 0;
}
int find(int * p,int n){
    while(p[n] > 0)
        n = p[n];
    return n;
}
void bubblesort(Graph *g,int len){
    int i,j;
    for(i=0;        i < len;    i++){
        for(j = len-1;    j>i;    j--){
            if(g->e[j].length < g->e[i].length){
                swap(g,i,j);
            }
        }
    }
}

void swap(Graph *g,int i,int j){
    edge *pool = (edge *)malloc(sizeof(edge));
    
    pool->begin = g->e[j].begin;
    pool->end = g->e[j].end;
    pool->length = g->e[j].length;

    g->e[j].begin = g->e[i].begin;
    g->e[j].end = g->e[i].end;
    g->e[j].length = g->e[i].length;

    g->e[i].begin = pool->begin;
    g->e[i].end = pool->end;
    g->e[i].length = pool->length;

    free(pool);
}
复制代码

运行结果

本文转自博客园xingoo的博客,原文链接:Kruskal算法,如需转载请自行联系原博主。
相关文章
|
4月前
|
算法 C语言
数据结构与算法——最小生成树问题(什么是最小生成树、Prim算法、Kruskal算法)
数据结构与算法——最小生成树问题(什么是最小生成树、Prim算法、Kruskal算法)
28 0
|
10月前
|
算法 搜索推荐
Kruskal算法
Kruskal算法
|
11月前
|
算法 C++
用prim和kruskal算法求最小生成树问题
用prim和kruskal算法求最小生成树问题
75 0
|
存储 算法 C++
最小生成树问题及Kruskal算法的解析
最小生成树问题及Kruskal算法的解析
204 2
|
算法 Java
数据结构(13)最小生成树JAVA版:prim算法、kruskal算法
13.1.概述 最小生成树,包含图的所有顶点的一棵树,树的边采用包含在图中的原有边中权重和最小的边。翻译成人话就是遍历一遍全图所有顶点的最短路径,这条路径就叫最小生成树。 最小生成树存在和图是连通图互为充要条件,顶点都不连通,肯定不可能有路能遍历一遍全图。 求解最小生成树有两种常用算法:
160 0
|
算法 Java 内存技术
Kruskal算法求最小生成树 Java带输入输出
Kruskal算法求最小生成树 Java带输入输出
93 0
|
算法
Prim算法和Kruskal算法到底哪个好?
Prim算法和Kruskal算法到底哪个好?
185 0
LeetCode算法小抄 -- Kruskal 最小生成树算法
LeetCode算法小抄 -- Kruskal 最小生成树算法
|
算法
大话数据结构--Kruskal算法
大话数据结构--Kruskal算法
79 0
|
算法 内存技术
搜索与图论-最小生成树(Prim 算法和 Kruskal 算法)
搜索与图论-最小生成树(Prim 算法和 Kruskal 算法)
下一篇
无影云桌面