机器学习如何选择模型 & 机器学习与数据挖掘区别 & 深度学习科普

简介:

今天看到这篇文章里面提到如何选择模型,觉得非常好,单独写在这里。

 

 更多的机器学习实战可以看这篇文章:http://www.cnblogs.com/charlesblc/p/6159187.html

 

另外关于机器学习与数据挖掘的区别,

参考这篇文章:https://www.zhihu.com/question/30557267


数据挖掘:也就是data mining,是一个很宽泛的概念。字面意思就是从成吨的数据里面挖掘有用的信息。这个工作BI(商业智能)可以做,数据分析可以做,甚至市场运营也可以做。你用excel分析分析数据,发现了一些有用的信息,然后这些信息可以指导你的business,恭喜你,你已经会数据挖掘了。

机器学习:machine learning,是计算机科学和统计学的交叉学科,基本目标是学习一个x->y的函数(映射),来做分类或者回归的工作。之所以经常和数据挖掘合在一起讲是因为现在好多数据挖掘的工作是通过机器学习提供的算法工具实现的,
例如广告的ctr预估,PB级别的点击日志在通过典型的机器学习流程可以得到一个预估模型,从而提高互联网广告的点击率和回报率;
个性化推荐,还是通过机器学习的一些算法分析平台上的各种购买,浏览和收藏日志,得到一个推荐模型,来预测你喜欢的商品。

深度学习:deep learning,机器学习里面现在比较火的一个topic(大坑),本身是神经网络算法的衍生,在图像,语音等富媒体的分类和识别上取得了非常好的效果,所以各大研究机构和公司都投入了大量的人力做相关的研究和开发。

总结下,数据挖掘是个很宽泛的概念,数据挖掘常用方法大多来自于机器学习这门学科,深度学习是机器学习一类比较火的算法,本质上还是原来的神经网络。

另外关于深度学习,可以看下面这个系列

单独写了篇文章学习: http://www.cnblogs.com/charlesblc/p/6159416.html
 
本文转自博客园知识天地的博客,原文链接:机器学习如何选择模型 & 机器学习与数据挖掘区别 & 深度学习科普,如需转载请自行联系原博主。


相关文章
|
26天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
66 3
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
【机器学习】探索GRU:深度学习中门控循环单元的魅力
【机器学习】探索GRU:深度学习中门控循环单元的魅力
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
53 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
74 2
|
2月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
2月前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
70 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
浅谈机器学习与深度学习的区别
浅谈机器学习与深度学习的区别
55 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能的未来:从机器学习到深度学习的演进
【10月更文挑战第8天】人工智能的未来:从机器学习到深度学习的演进
64 0
|
2月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力
【机器学习】探索LSTM:深度学习领域的强大时间序列处理能力