Java程序员的日常—— 垃圾回收中引用类型的作用

简介:

在Java里面,是不需要太过于关乎垃圾回收,但是这并不意味着开发者可以不了解垃圾回收的机制,况且在java中内存泄露也是家常便饭的事情。因此了解垃圾回收的相关知识就显得很重要了。

引用,在垃圾回收中是一个很关键的概念,它关系到如何辨别这个对象是否被回收,什么时机回收。

引用的类型

在Java中引用的类型可以分为四个类型,依次是:

  • 强引用:在任何时间JVM都不会进行回收
  • 软引用:在内存不够的时候,JVM会进行回收
  • 弱引用:只要进行垃圾回收,就会触发回收
  • 虚引用:不知道啥时候就被回收了,可以理解为没引用一个样

因此,按照JVM对他们回收的几率从小到大依次为:

强引用<软引用<弱引用<虚引用

也就是说JVM对强引用的回收能力最小,对虚引用的回收能力最大。

引用分类的作用

一般我们编写的代码都是强引用的,比如:

Person p = new Person();
Person p1 = p;

pp1都指向了创建的Person对象,他们都是强引用的。如果想要回收这个对象,只有p1p都指向null后,才可以。

那么,有一些场景下往往引用清除的不及时,就会造成内存泄露,一些对象无法回收;无法回收的对象如果积累很多,就会造成OUT OF MEMORY——OOM.

举个例子,在很多的代码里面都喜欢用Map作为内存缓存的容器,如果你写出了这样的代码:

Map<String,Object> map = new HashMap<String,String>();
while(true){
    Object value = new XXX();
    map.add(key,value);
    value = null;
}

虽然说,后面的value被设置成Null,但是map里面却仍然保留了对象的引用,因此这个对象实际上是无法被回收的。

做个测试:

public class WeakTest {
    static final int MB = 1024 * 512;

    static String createLongString(int length) {
        StringBuilder sb = new StringBuilder(length);
        for (int i = 0; i < length; i++)
            sb.append('a');
        sb.append(System.nanoTime());
        return sb.toString();
    }

    public static void main(String[] args) {
        Map<Integer,String> substrings = new HashMap();//强引用的Map
        for(int i=0; i< 1000000; i++){
            String longStr = createLongString(MB);
            substrings.put(i,longStr);
//            longStr = null;
//            substrings.remove(i);
            System.out.println(i);
        }
    }
}

如果注释的两句话不被打开,那么很快就会内存溢出。除非你两边都去解除应用,可想而知,程序员做这种工作实在是太痛苦了。

不要担心,这个时候就可以应用到上面的不同类型的引用知识了

在Java里面,JDK为我们提供了一个弱引用的集合,WeakHashMap。它会在垃圾回收的时候尝试回收集合里面的对象。当然根据垃圾回收的时机,也可以选择软引用的集合。

public static void main(String[] args) {
        Map<Integer,String> substrings = new WeakHashMap();//弱引用的Map
        for(int i=0; i< 1000000; i++){
            String longStr = createLongString(MB);
            substrings.put(i,longStr);
            System.out.println(i);
        }
    }

这样就不担心内存溢出了。

场景设想

比如,你的系统需要引用大量的资源相关的缓存,但是还没有引入redis等缓存系统,那么就可以使用这种方式。

虚引用

虚引用的使用场景就比较鸡肋了,我也想不出什么时候会使用它。但是它跟其他的引用都有一种场景,就是在垃圾回收的时候,把引用放在回收队列里面,针对这个队列可以做一些操作。这种方式比finalize()要文档的多..

public class PhantomTest {
    public static boolean isRun = true;

    public static void main(String[] args) throws Exception {
        String abc = new String("abc");
        System.out.println(abc.getClass() + "@" + abc.hashCode());
        final ReferenceQueue referenceQueue = new ReferenceQueue<String>();
        new Thread() {
                public void run() {
                    while (isRun) {
                        Object o = referenceQueue.poll();
                        if (o != null) {
                            try {
                                Field rereferent = Reference.class.getDeclaredField("referent");
                                rereferent.setAccessible(true);
                                Object result = rereferent.get(o);
                                System.out.println("gc will collect:"+ result.getClass() + "@"+ result.hashCode());
                            } catch (Exception e) {
                                e.printStackTrace();
                            }
                        }
                    }
                }
            }.start();
            PhantomReference<String> abcWeakRef = new PhantomReference<String>(abc,referenceQueue);
            abc = null;
            Thread.currentThread().sleep(3000);
            System.gc();
            Thread.currentThread().sleep(3000);
            isRun = false;
        }

}

首先需要创建一个引用队列:

final ReferenceQueue referenceQueue = new ReferenceQueue<String>();

创建虚引用,并关联到引用队列

PhantomReference<String> abcWeakRef = new PhantomReference<String>(abc,referenceQueue);

等引用被回收的时候,就会在Object o = referenceQueue.poll();取到对象引用了。

虽然一般不会有这种底层的使用场景,但是了解一点总归是好的。

本文转自博客园xingoo的博客,原文链接:Java程序员的日常—— 垃圾回收中引用类型的作用,如需转载请自行联系原博主。
相关文章
|
5月前
|
人工智能 Kubernetes Java
回归开源,两位 Java 和 Go 程序员分享的开源贡献指引
Higress是一个基于Istio和Envoy的云原生API网关,支持AI功能扩展。它通过Go/Rust/JS编写的Wasm插件提供可扩展架构,并包含Node和Java的console模块。Higress起源于阿里巴巴,解决了Tengine配置重载及gRPC/Dubbo负载均衡问题,现已成为阿里云API网关的基础。本文介绍Higress的基本架构、功能(如AI网关、API管理、Ingress流量网关等)、部署方式以及如何参与开源贡献。此外,还提供了有效的开源贡献指南和社区交流信息。
527 33
|
5月前
|
网络协议 Java 大数据
【高薪程序员必看】万字长文拆解Java并发编程!(1)
📌 核心痛点暴击:1️⃣ 面了8家都被问synchronized锁升级?一张图看懂偏向锁→重量级锁全过程!2️⃣ 线程池参数不会配?高并发场景下这些参数调优救了项目组命!3️⃣ volatile双重检测单例模式到底安不安全?99%人踩过的内存可见性大坑!💡 独家亮点抢先看:✅ 图解JVM内存模型(JMM)三大特性,看完再也不怕指令重排序✅ 手撕ReentrantLock源码,AQS队列同步器实现原理大揭秘✅ 全网最细线程状态转换图(附6种状态转换触发条件表)
109 0
|
5月前
|
安全 Java 程序员
【高薪程序员必看】万字长文拆解Java并发编程!(2 2-1)
🔥【高薪程序员必看】万字长文拆解Java并发编程!面试官看了直呼内行,90%人不知道的线程安全骚操作!💻🚀《16个高频面试灵魂拷问+底层源码暴击》🔥👉戳这里看如何用1个月经验吊打3年程序员!📌 核心痛点暴击:1️⃣ 面了8家都被问synchronized锁升级?一张图看懂偏向锁→重量级锁全过程!2️⃣ 线程池参数不会配?高并发场景下这些参数调优救了项目组命!3️⃣ volatile双重检测单例模式到底安不安全?99%人踩过的内存可见性大坑!
98 0
|
5月前
|
Java 程序员 应用服务中间件
【高薪程序员必看】万字长文拆解Java并发编程!(2 2-2)
📌 核心痛点暴击:1️⃣ 面了8家都被问synchronized锁升级?一张图看懂偏向锁→重量级锁全过程!2️⃣ 线程池参数不会配?高并发场景下这些参数调优救了项目组命!3️⃣ volatile双重检测单例模式到底安不安全?99%人踩过的内存可见性大坑!💡 独家亮点抢先看:✅ 图解JVM内存模型(JMM)三大特性,看完再也不怕指令重排序✅ 手撕ReentrantLock源码,AQS队列同步器实现原理大揭秘✅ 全网最细线程状态转换图(附6种状态转换触发条件表)
97 0
|
5月前
|
缓存 安全 Java
【高薪程序员必看】万字长文拆解Java并发编程!(3-1):并发共享问题的解决与分析
活锁:多个线程相互影响对方退出同步代码块的条件而导致线程一直运行的情况。例如,线程1的退出条件是count=5,而线程2和线程3在其代码块中不断地是count进行自增自减的操作,导致线程1永远运行。内存一致性问题:由于JIT即时编译器对缓存的优化和指令重排等造成的内存可见性和有序性问题,可以通过synchronized,volatile,并发集合类等机制来解决。这里的线程安全是指,多个线程调用它们同一个实例的方法时,是线程安全的,但仅仅能保证当前调用的方法是线程安全的,不同方法之间是线程不安全的。
91 0
|
5月前
|
Java 程序员
【高薪程序员必看】万字长文拆解Java并发编程!(3-2):并发共享问题的解决与分析
wait方法和notify方法都是Object类的方法:让当前获取锁的线程进入waiting状态,并进入waitlist队列:让当前获取锁的线程进入waiting状态,并进入waitlist队列,等待n秒后自动唤醒:在waitlist队列中挑一个线程唤醒:唤醒所有在waitlist队列中的线程它们都是之间协作的手段,只有拥有对象锁的线程才能调用这些方法,否则会出现IllegalMonitorStateException异常park方法和unpark方法是LockSupport类中的方法。
95 0
|
5月前
|
存储 安全 Java
【高薪程序员必看】万字长文拆解Java并发编程!(4-1):悲观锁底层原理与性能优化实战
目录4. JVM字节码文件4.1. 字节码文件-组成4.1.1. 组成-基础信息4.1.1.1. 基础信息-魔数4.1.1.2. 基础信息-主副版本号4.1.2. 组成-常量池4.1.3. 组成-方法4.1.3.1. 方法-工作流程4.1.4. 组成-字段4.1.5. 组成-属性4.2. 字节码文件-查看工具4.2.1. javap4.2.2. jclasslib4.2.3. 阿里Arthas
77 0
|
5月前
|
存储 缓存 Java
【高薪程序员必看】万字长文拆解Java并发编程!(5):深入理解JMM:Java内存模型的三大特性与volatile底层原理
JMM,Java Memory Model,Java内存模型,定义了主内存,工作内存,确保Java在不同平台上的正确运行主内存Main Memory:所有线程共享的内存区域,所有的变量都存储在主存中工作内存Working Memory:每个线程拥有自己的工作内存,用于保存变量的副本.线程执行过程中先将主内存中的变量读到工作内存中,对变量进行操作之后再将变量写入主内存,jvm概念说明主内存所有线程共享的内存区域,存储原始变量(堆内存中的对象实例和静态变量)工作内存。
162 0
|
5月前
|
安全 Java 程序员
【高薪程序员必看】万字长文拆解Java并发编程!(6-2):从CAS无锁机制到Atomic原子类实战指南
🌟 ​🌟今天给大家带来的是 ​💻⚡在这篇文章中,我们将一起探索:🔹 ​的底层原理,它是如何通过 ​实现无锁并发的?🔹 ​的终极对决,为什么高并发场景下CAS性能更优?🔹 ​的陷阱与解决方案——和实战演示!🔹 ​​(LongAdder等)的使用场景与性能对比🔹 危险的 ​黑魔法:为什么阿里禁止使用却又是并发库的基石?无论你是:✅ ​​(BATJ高频考点)✅ ​​(如何设计百万级计数器)✅ ​​(从Java代码到CPU指令的全链路分析)这篇文章都会让你收获满满!✨。
66 0
|
5月前
|
安全 Java 程序员
【高薪程序员必看】万字长文拆解Java并发编程!(6-1):从CAS无锁机制到Atomic原子类实战指南
🌟 ​🌟今天给大家带来的是 ​💻⚡在这篇文章中,我们将一起探索:🔹 ​的底层原理,它是如何通过 ​实现无锁并发的?🔹 ​的终极对决,为什么高并发场景下CAS性能更优?🔹 ​的陷阱与解决方案——和实战演示!🔹 ​​(LongAdder等)的使用场景与性能对比🔹 危险的 ​黑魔法:为什么阿里禁止使用却又是并发库的基石?无论你是:✅ ​​(BATJ高频考点)✅ ​​(如何设计百万级计数器)✅ ​​(从Java代码到CPU指令的全链路分析)这篇文章都会让你收获满满!✨。
70 0