sklearn学习笔记之简单线性回归

简介: 简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项。线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算。

简单线性回归

线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项。线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误差项之后,方程的解法就存在了改变,一般使用最小二乘法进行计算。

使用sklearn.linear_model.LinearRegression进行线性回归

sklearn对Data Mining的各类算法已经有了较好的封装,基本可以使用fitpredictscore来训练、评价模型,并使用模型进行预测,一个简单的例子如下:

>>> from sklearn import linear_model
>>> clf = linear_model.LinearRegression()
>>> X = [[0,0],[1,1],[2,2]] >>> y = [0,1,2] >>> clf.fit(X,y) >>> print(clf.coef_) [ 0.5 0.5] >>> print(clf.intercept_) 1.11022302463e-16

LinearRegression已经实现了多元线性回归模型,当然,也可以用来计算一元线性模型,通过使用list[list]传递数据就行。下面是LinearRegression的具体说明。

使用方法

实例化

sklearn一直秉承着简洁为美得思想设计着估计器,实例化的方式很简单,使用clf = LinearRegression()就可以完成,但是仍然推荐看一下几个可能会用到的参数:

  • fit_intercept:是否存在截距,默认存在
  • normalize:标准化开关,默认关闭

还有一些参数感觉不是太有用,就不再说明了,可以去官网文档中查看。

回归

其实在上面的例子中已经使用了fit进行回归计算了,使用的方法也是相当的简单。

  • fit(X,y,sample_weight=None)X,y以矩阵的方式传入,而sample_weight则是每条测试数据的权重,同样以array格式传入。
  • predict(X):预测方法,将返回预测值y_pred
  • score(X,y,sample_weight=None):评分函数,将返回一个小于1的得分,可能会小于0

方程

LinearRegression将方程分为两个部分存放,coef_存放回归系数,intercept_则存放截距,因此要查看方程,就是查看这两个变量的取值。

多项式回归

其实,多项式就是多元回归的一个变种,只不过是原来需要传入的是X向量,而多项式则只要一个x值就行。通过将x扩展为指定阶数的向量,就可以使用LinearRegression进行回归了。sklearn已经提供了扩展的方法——sklearn.preprocessing.PolynomialFeatures。利用这个类可以轻松的将x扩展为X向量,下面是它的使用方法:

>>> from sklearn.preprocessing import PolynomialFeatures
>>> X_train = [[1],[2],[3],[4]]
>>> quadratic_featurizer = PolynomialFeatures(degree=2)
>>> X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
>>> print(X_train_quadratic)
[[ 1  1  1]
 [ 1  2  4]
 [ 1  3  9]
 [ 1  4 16]]

经过以上处理,就可以使用LinearRegression进行回归计算了。

本文转自博客园知识天地的博客,原文链接:sklearn学习笔记之简单线性回归,如需转载请自行联系原博主。


相关文章
|
1天前
|
人工智能 运维 安全
|
3天前
|
SpringCloudAlibaba 负载均衡 Dubbo
微服务架构下Feign和Dubbo的性能大比拼,到底鹿死谁手?
本文对比分析了SpringCloudAlibaba框架下Feign与Dubbo的服务调用性能及差异。Feign基于HTTP协议,使用简单,适合轻量级微服务架构;Dubbo采用RPC通信,性能更优,支持丰富的服务治理功能。通过实际测试,Dubbo在调用性能、负载均衡和服务发现方面表现更出色。两者各有适用场景,可根据项目需求灵活选择。
371 123
微服务架构下Feign和Dubbo的性能大比拼,到底鹿死谁手?
|
6天前
|
人工智能 JavaScript 测试技术
Qwen3-Coder入门教程|10分钟搞定安装配置
Qwen3-Coder 挑战赛简介:无论你是编程小白还是办公达人,都能通过本教程快速上手 Qwen-Code CLI,利用 AI 轻松实现代码编写、文档处理等任务。内容涵盖 API 配置、CLI 安装及多种实用案例,助你提升效率,体验智能编码的乐趣。
581 107
|
2天前
|
Java 数据库 数据安全/隐私保护
Spring 微服务和多租户:处理多个客户端
本文介绍了如何在 Spring Boot 微服务架构中实现多租户。多租户允许单个应用实例为多个客户提供独立服务,尤其适用于 SaaS 应用。文章探讨了多租户的类型、优势与挑战,并详细说明了如何通过 Spring Boot 的灵活配置实现租户隔离、动态租户管理及数据源路由,同时确保数据安全与系统可扩展性。结合微服务的优势,开发者可以构建高效、可维护的多租户系统。
193 127
|
2天前
|
Web App开发 前端开发 API
在折叠屏应用中,如何处理不同屏幕尺寸和设备类型的样式兼容性?
在折叠屏应用中,如何处理不同屏幕尺寸和设备类型的样式兼容性?
222 124
|
2天前
|
人工智能 数据可视化 测试技术
Coze平台指南(3):核心功能-创建智能体与设计角色
Coze 智能体是由大语言模型驱动,通过提示词设定角色,并借助知识库、插件和工作流扩展能力,以执行特定任务的AI助手。对测试工程师而言,精心设计的智能体可显著提升测试效率与质量,关键是要准确理解测试需求,并将其转化为智能体的角色设定和功能配置。建议进一步学习知识库与工作流,以深化应用。
|
6天前
|
JSON fastjson Java
FastJson 完全学习指南(初学者从零入门)
摘要:本文是FastJson的入门学习指南,主要内容包括: JSON基础:介绍JSON格式特点、键值对规则、数组和对象格式,以及嵌套结构的访问方式。FastJson是阿里巴巴开源的高性能JSON解析库,具有速度快、功能全、使用简单等优势,并介绍如何引入依赖,如何替换Springboot默认的JackJson。 核心API: 序列化:将Java对象转换为JSON字符串,演示对象、List和Map的序列化方法; 反序列化:将JSON字符串转回Java对象,展示基本对象转换方法;

热门文章

最新文章