使用TensorFlow的递归神经网络(LSTM)进行序列预测

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
简介: 本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测。作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的。 所以呢,这里是基于历史观察数据进行实数序列的预测。

本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测。作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的。

所以呢,这里是基于历史观察数据进行实数序列的预测。传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情。

在这个例子里将预测几个函数:

  • 正弦函数:sin

  • 同时存在正弦函数和余弦函数:sin和cos

  • x*sin(x)

首先,建立LSTM模型,lstm_model,这个模型有一系列的不同时间步的lstm单元(cell),紧跟其后的是稠密层。

def lstm_model(time_steps, rnn_layers, dense_layers=None):
     def lstm_cells(layers):
         if isinstance(layers[0], dict):
             return [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(layer['steps']), layer['keep_prob'])
                     if layer.get('keep_prob') else tf.nn.rnn_cell.BasicLSTMCell(layer['steps'])
                     for layer in layers]
         return [tf.nn.rnn_cell.BasicLSTMCell(steps) for steps in layers]
     def dnn_layers(input_layers, layers):
         if layers and isinstance(layers, dict):
             return skflow.ops.dnn(input_layers,
                                   layers['layers'],
                                   activation=layers.get('activation'),
                                   dropout=layers.get('dropout'))
         elif layers:
             return skflow.ops.dnn(input_layers, layers)
         else:
             return input_layers
     def _lstm_model(X, y):
         stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers))
         x_ = skflow.ops.split_squeeze(1, time_steps, X)
         output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32)
         output = dnn_layers(output[-1], dense_layers)
         return skflow.models.linear_regression(output, y)
     return _lstm_model

所建立的模型期望输入数据的维度与(batch size,第一个lstm cell的时间步长time_step,特征数量num_features)相关。 
接下来我们按模型所能接受的数据方式来准备数据。

def rnn_data(data, time_steps, labels=False):
    """
    creates new data frame based on previous observation
      * example:
        l = [1, 2, 3, 4, 5]
        time_steps = 2
        -> labels == False [[1, 2], [2, 3], [3, 4]]
        -> labels == True [2, 3, 4, 5]
    """
    rnn_df = []
    for i in range(len(data) - time_steps):
        if labels:
            try:
                rnn_df.append(data.iloc[i + time_steps].as_matrix())
            except AttributeError:
                rnn_df.append(data.iloc[i + time_steps])
        else:
            data_ = data.iloc[i: i + time_steps].as_matrix()
            rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_])
    return np.array(rnn_df)
def split_data(data, val_size=0.1, test_size=0.1):
    """
    splits data to training, validation and testing parts
    """
    ntest = int(round(len(data) * (1 - test_size)))
    nval = int(round(len(data.iloc[:ntest]) * (1 - val_size)))
    df_train, df_val, df_test = data.iloc[:nval], data.iloc[nval:ntest], data.iloc[ntest:]
    return df_train, df_val, df_test
def prepare_data(data, time_steps, labels=False, val_size=0.1, test_size=0.1):
    """
    Given the number of `time_steps` and some data.
    prepares training, validation and test data for an lstm cell.
    """
    df_train, df_val, df_test = split_data(data, val_size, test_size)
    return (rnn_data(df_train, time_steps, labels=labels),
            rnn_data(df_val, time_steps, labels=labels),
            rnn_data(df_test, time_steps, labels=labels))
def generate_data(fct, x, time_steps, seperate=False):
    """generate data with based on a function fct"""
    data = fct(x)
    if not isinstance(data, pd.DataFrame):
        data = pd.DataFrame(data)
    train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps)
    train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True)
    return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test

这将会创建一个数据让模型可以查找过去time_steps步来预测数据。比如,LSTM模型的第一个cell是10 time_steps cell,为了做预测我们需要输入10个历史数据点。y值跟我们想预测的第十个值相关。 
现在创建一个基于LSTM模型的回归量。

regressor = skflow.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
                                       n_classes=0,
                                       verbose=1,  
                                       steps=TRAINING_STEPS,
                                       optimizer='Adagrad',
                                       learning_rate=0.03,
                                       batch_size=BATCH_SIZE)

预测sin函数

X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
                                                       print_steps=PRINT_STEPS,
                                                       early_stopping_rounds=1000,
                                                       logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9700, epoch #119, avg. train loss: 0.00082, avg. val loss: 0.00084
# Step #9800, epoch #120, avg. train loss: 0.00083, avg. val loss: 0.00082
# Step #9900, epoch #122, avg. train loss: 0.00082, avg. val loss: 0.00082
# Step #10000, epoch #123, avg. train loss: 0.00081, avg. val loss: 0.00081

预测测试数据

mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.000776

真实sin函数

预测sin函数

预测sin和cos混合函数

def sin_cos(x):
    return pd.DataFrame(dict(a=np.sin(x), b=np.cos(x)), index=x)
X, y = generate_data(sin_cos, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
# create a lstm instance and validation monitor
validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
                                                       print_steps=PRINT_STEPS,
                                                       early_stopping_rounds=1000,
                                                       logdir=LOG_DIR)
regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
# > last training steps
# Step #9500, epoch #117, avg. train loss: 0.00120, avg. val loss: 0.00118
# Step #9600, epoch #118, avg. train loss: 0.00121, avg. val loss: 0.00118
# Step #9700, epoch #119, avg. train loss: 0.00118, avg. val loss: 0.00118
# Step #9800, epoch #120, avg. train loss: 0.00118, avg. val loss: 0.00116
# Step #9900, epoch #122, avg. train loss: 0.00118, avg. val loss: 0.00115
# Step #10000, epoch #123, avg. train loss: 0.00117, avg. val loss: 0.00115

预测测试数据

mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 0.001144

真实的sin_cos函数

预测的sin_cos函数

预测x*sin函数
def x_sin(x):
     return x * np.sin(x)
 X, y = generate_data(x_sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
 # create a lstm instance and validation monitor
 validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
                                                        print_steps=PRINT_STEPS,
                                                        early_stopping_rounds=1000,
                                                        logdir=LOG_DIR)
 regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
 # > last training steps
 # Step #32500, epoch #401, avg. train loss: 0.48248, avg. val loss: 15.98678
 # Step #33800, epoch #417, avg. train loss: 0.47391, avg. val loss: 15.92590
 # Step #35100, epoch #433, avg. train loss: 0.45570, avg. val loss: 15.77346
 # Step #36400, epoch #449, avg. train loss: 0.45853, avg. val loss: 15.61680
 # Step #37700, epoch #465, avg. train loss: 0.44212, avg. val loss: 15.48604
 # Step #39000, epoch #481, avg. train loss: 0.43224, avg. val loss: 15.43947

预测测试数据

mse = mean_squared_error(regressor.predict(X['test']), y['test'])
print ("Error: {}".format(mse))
# 61.024454351

真实的x*sin函数

预测的x*sin函数

本文转自博客园知识天地的博客,原文链接:使用TensorFlow的递归神经网络(LSTM)进行序列预测,如需转载请自行联系原博主。



相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
4月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
164 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
6月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
643 55
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
217 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 算法 TensorFlow
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
292 1
动物识别系统Python+卷积神经网络算法+TensorFlow+人工智能+图像识别+计算机毕业设计项目
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
4月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
263 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
6月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
298 80
|
4月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
190 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
6月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
363 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
6月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。

热门文章

最新文章