Directx 11中垂直同步的设置

简介: 1、什么是垂直同步?      垂直同步又称场同步(Vertical Hold),从CRT显示器的显示原理来看,单个象素组成了水平扫描线,水平扫描线在垂直方向的堆积形成了完整的画面。显示器的刷新率受显卡DAC控制,显卡DAC完成一帧的扫描后就会产生一个垂直同步信号。

1、什么是垂直同步?

     垂直同步又称场同步(Vertical Hold),从CRT显示器的显示原理来看,单个象素组成了水平扫描线,水平扫描线在垂直方向的堆积形成了完整的画面。显示器的刷新率受显卡DAC控制,显卡DAC完成一帧的扫描后就会产生一个垂直同步信号。

当我们选择\"等待垂直同步信号"(即打开垂直同步)时,显卡绘制3D图形前会等待垂直同步信号,性能强劲的显卡则会提前完成渲染,并在下个垂直信号之前进行等待。由此可见,当打开垂直同步时,游戏的FPS要受刷新率的制约,对于高端显卡而言,限制了其性能的发挥。

    当我们选择\"不等待垂直同步信号"(即关闭垂直同步)时,3D引擎将全速运行,不再等待垂直同步信号的到来,显卡性能得到了最大的发挥。所以我们测试显卡3D性能时,一定要关闭垂直同步。不少的朋友认为在游戏中关闭垂直同步可以得到更高的帧速,其实不然,这虚高的帧速不仅要受到显示器刷新率的制约,更会对游戏画面产生不良的影响。一般来说,关闭垂直同步会导致游戏画面产生以下两种问题:

(1)画面撕裂
在打cs的时候会碰到这种情况,图像断裂
(2)跳帧
假如显示器设定的刷新率是80Hz,显卡以100FPS循环显示0-9数字,那么,在开始的0.1秒内,显卡显示了10个数字而显示器只刷新了8次。可见,由于显示器刷新率跟不上游戏的FPS,只能舍弃一部分画面,这种现象表现在游戏里就是跳帧。鬼武者3等一些移植到PC上的游戏在关闭垂直同步时通常会出现这种问题。

2、directx 11中设置垂直同步的代码:

bool D3DClass::Initialize(int screenWidth, int screenHeight, bool vsync, HWND hwnd, bool fullscreen, 
float screenDepth, float screenNear)
{
HRESULT result;
IDXGIFactory* factory;
IDXGIAdapter* adapter;
IDXGIOutput* adapterOutput;
unsigned int numModes, i, numerator, denominator, stringLength;
DXGI_MODE_DESC* displayModeList;
DXGI_ADAPTER_DESC adapterDesc;
int error;
DXGI_SWAP_CHAIN_DESC swapChainDesc;
D3D_FEATURE_LEVEL featureLevel;
ID3D11Texture2D* backBufferPtr;
D3D11_TEXTURE2D_DESC depthBufferDesc;
D3D11_DEPTH_STENCIL_DESC depthStencilDesc;
D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
D3D11_RASTERIZER_DESC rasterDesc;
D3D11_VIEWPORT viewport;
float fieldOfView, screenAspect;


// Store the vsync setting.
m_vsync_enabled = vsync;

// Create a DirectX graphics interface factory.
result = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory);
if(FAILED(result))
{
return false;
}

// Use the factory to create an adapter for the primary graphics interface (video card).
result = factory->EnumAdapters(0, &adapter);
if(FAILED(result))
{
return false;
}

// Enumerate the primary adapter output (monitor).
result = adapter->EnumOutputs(0, &adapterOutput);
if(FAILED(result))
{
return false;
}

// Get the number of modes that fit the DXGI_FORMAT_R8G8B8A8_UNORM display format for the adapter output (monitor).
result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, NULL);
if(FAILED(result))
{
return false;
}

// Create a list to hold all the possible display modes for this monitor/video card combination.
displayModeList = new DXGI_MODE_DESC[numModes];
if(!displayModeList)
{
return false;
}

// Now fill the display mode list structures.
result = adapterOutput->GetDisplayModeList(DXGI_FORMAT_R8G8B8A8_UNORM, DXGI_ENUM_MODES_INTERLACED, &numModes, displayModeList);
if(FAILED(result))
{
return false;
}

// Now go through all the display modes and find the one that matches the screen width and height.
// When a match is found store the numerator and denominator of the refresh rate for that monitor.
for(i=0; i<numModes; i++)
{
if(displayModeList[i].Width == (unsigned int)screenWidth)
{
if(displayModeList[i].Height == (unsigned int)screenHeight)
{
numerator = displayModeList[i].RefreshRate.Numerator;
denominator = displayModeList[i].RefreshRate.Denominator;
}
}
}

// Get the adapter (video card) description.
result = adapter->GetDesc(&adapterDesc);
if(FAILED(result))
{
return false;
}

// Store the dedicated video card memory in megabytes.
m_videoCardMemory = (int)(adapterDesc.DedicatedVideoMemory / 1024 / 1024);

// Convert the name of the video card to a character array and store it.
error = wcstombs_s(&stringLength, m_videoCardDescription, 128, adapterDesc.Description, 128);
if(error != 0)
{
return false;
}

// Release the display mode list.
delete [] displayModeList;
displayModeList = 0;

// Release the adapter output.
adapterOutput->Release();
adapterOutput = 0;

// Release the adapter.
adapter->Release();
adapter = 0;

// Release the factory.
factory->Release();
factory = 0;

// Initialize the swap chain description.
ZeroMemory(&swapChainDesc, sizeof(swapChainDesc));

// Set to a single back buffer.
swapChainDesc.BufferCount = 1;

// Set the width and height of the back buffer.
swapChainDesc.BufferDesc.Width = screenWidth;
swapChainDesc.BufferDesc.Height = screenHeight;

// Set regular 32-bit surface for the back buffer.
swapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;

// Set the refresh rate of the back buffer.
if(m_vsync_enabled)
{
swapChainDesc.BufferDesc.RefreshRate.Numerator = numerator;
swapChainDesc.BufferDesc.RefreshRate.Denominator = denominator;
}
else
{
swapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
swapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
}

// Set the usage of the back buffer.
swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;

// Set the handle for the window to render to.
swapChainDesc.OutputWindow = hwnd;

// Turn multisampling off.
swapChainDesc.SampleDesc.Count = 1;
swapChainDesc.SampleDesc.Quality = 0;

// Set to full screen or windowed mode.
if(fullscreen)
{
swapChainDesc.Windowed = false;
}
else
{
swapChainDesc.Windowed = true;
}

// Set the scan line ordering and scaling to unspecified.
swapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
swapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;

// Discard the back buffer contents after presenting.
swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD;

// Don't set the advanced flags.
swapChainDesc.Flags = 0;

// Set the feature level to DirectX 11.
featureLevel = D3D_FEATURE_LEVEL_11_0;

// Create the swap chain, Direct3D device, and Direct3D device context.
result = D3D11CreateDeviceAndSwapChain(NULL, D3D_DRIVER_TYPE_HARDWARE, NULL, 0, &featureLevel, 1,
D3D11_SDK_VERSION, &swapChainDesc, &m_swapChain, &m_device, NULL, &m_deviceContext);
if(FAILED(result))
{
return false;
}

// Get the pointer to the back buffer.
result = m_swapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (LPVOID*)&backBufferPtr);
if(FAILED(result))
{
return false;
}

// Create the render target view with the back buffer pointer.
result = m_device->CreateRenderTargetView(backBufferPtr, NULL, &m_renderTargetView);
if(FAILED(result))
{
return false;
}

// Release pointer to the back buffer as we no longer need it.
backBufferPtr->Release();
backBufferPtr = 0;

// Initialize the description of the depth buffer.
ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc));

// Set up the description of the depth buffer.
depthBufferDesc.Width = screenWidth;
depthBufferDesc.Height = screenHeight;
depthBufferDesc.MipLevels = 1;
depthBufferDesc.ArraySize = 1;
depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthBufferDesc.SampleDesc.Count = 1;
depthBufferDesc.SampleDesc.Quality = 0;
depthBufferDesc.Usage = D3D11_USAGE_DEFAULT;
depthBufferDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
depthBufferDesc.CPUAccessFlags = 0;
depthBufferDesc.MiscFlags = 0;

// Create the texture for the depth buffer using the filled out description.
result = m_device->CreateTexture2D(&depthBufferDesc, NULL, &m_depthStencilBuffer);
if(FAILED(result))
{
return false;
}

// Initialize the description of the stencil state.
ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc));

// Set up the description of the stencil state.
depthStencilDesc.DepthEnable = true;
depthStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
depthStencilDesc.DepthFunc = D3D11_COMPARISON_LESS;

depthStencilDesc.StencilEnable = true;
depthStencilDesc.StencilReadMask = 0xFF;
depthStencilDesc.StencilWriteMask = 0xFF;

// Stencil operations if pixel is front-facing.
depthStencilDesc.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
depthStencilDesc.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_INCR;
depthStencilDesc.FrontFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
depthStencilDesc.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;

// Stencil operations if pixel is back-facing.
depthStencilDesc.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
depthStencilDesc.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_DECR;
depthStencilDesc.BackFace.StencilPassOp = D3D11_STENCIL_OP_KEEP;
depthStencilDesc.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;

// Create the depth stencil state.
result = m_device->CreateDepthStencilState(&depthStencilDesc, &m_depthStencilState);
if(FAILED(result))
{
return false;
}

// Set the depth stencil state.
m_deviceContext->OMSetDepthStencilState(m_depthStencilState, 1);

// Initialize the depth stencil view.
ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc));

// Set up the depth stencil view description.
depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
depthStencilViewDesc.Texture2D.MipSlice = 0;

// Create the depth stencil view.
result = m_device->CreateDepthStencilView(m_depthStencilBuffer, &depthStencilViewDesc, &m_depthStencilView);
if(FAILED(result))
{
return false;
}

// Bind the render target view and depth stencil buffer to the output render pipeline.
m_deviceContext->OMSetRenderTargets(1, &m_renderTargetView, m_depthStencilView);

// Setup the raster description which will determine how and what polygons will be drawn.
rasterDesc.AntialiasedLineEnable = false;
rasterDesc.CullMode = D3D11_CULL_BACK;
rasterDesc.DepthBias = 0;
rasterDesc.DepthBiasClamp = 0.0f;
rasterDesc.DepthClipEnable = true;
rasterDesc.FillMode = D3D11_FILL_SOLID;
rasterDesc.FrontCounterClockwise = false;
rasterDesc.MultisampleEnable = false;
rasterDesc.ScissorEnable = false;
rasterDesc.SlopeScaledDepthBias = 0.0f;

// Create the rasterizer state from the description we just filled out.
result = m_device->CreateRasterizerState(&rasterDesc, &m_rasterState);
if(FAILED(result))
{
return false;
}

// Now set the rasterizer state.
m_deviceContext->RSSetState(m_rasterState);

// Setup the viewport for rendering.
viewport.Width = (float)screenWidth;
viewport.Height = (float)screenHeight;
viewport.MinDepth = 0.0f;
viewport.MaxDepth = 1.0f;
viewport.TopLeftX = 0.0f;
viewport.TopLeftY = 0.0f;

// Create the viewport.
m_deviceContext->RSSetViewports(1, &viewport);

// Setup the projection matrix.
fieldOfView = (float)D3DX_PI / 4.0f;
screenAspect = (float)screenWidth / (float)screenHeight;

// Create the projection matrix for 3D rendering.
D3DXMatrixPerspectiveFovLH(&m_projectionMatrix, fieldOfView, screenAspect, screenNear, screenDepth);

// Initialize the world matrix to the identity matrix.
D3DXMatrixIdentity(&m_worldMatrix);

// Create an orthographic projection matrix for 2D rendering.
D3DXMatrixOrthoLH(&m_orthoMatrix, (float)screenWidth, (float)screenHeight, screenNear, screenDepth);

return true;
}

相关文章
|
9月前
QT+OpenGL鼠标操作和模型控制
光线追踪法 从鼠标投射 3D 射线, 通过摄像机,进入场景,然后检查该光线是否与某个对象相交。
134 0
|
计算机视觉
Qt实用技巧:Qt设计器中QIcon的缩放(qss的放大和QIcon自动缩小(无法自动放大))
Qt实用技巧:Qt设计器中QIcon的缩放(qss的放大和QIcon自动缩小(无法自动放大))
Qt实用技巧:Qt设计器中QIcon的缩放(qss的放大和QIcon自动缩小(无法自动放大))
关于 Qt图形视图框架自绘图元放到左边和上边之外,部分在内进行拉伸后,拉伸多余的区域无法碰撞 的解决方法
关于 Qt图形视图框架自绘图元放到左边和上边之外,部分在内进行拉伸后,拉伸多余的区域无法碰撞 的解决方法
关于 Qt图形视图框架自绘图元放到左边和上边之外,部分在内进行拉伸后,拉伸多余的区域无法碰撞 的解决方法
Win系统 - 如何关闭垂直还是60FPS?
Win系统 - 如何关闭垂直还是60FPS?
74 0
Win系统 - 如何关闭垂直还是60FPS?
UGUI系列-列表添加物理效果(Unity3D)
最近要做一个滑动列表界面,美术的效果图为用绳子连接的短板,上面附带信息,看图的感觉似乎添加点物理效果(让绳子不规则的带动短板晃动)会显得更加真实,于是为这个界面加了些物理效果,感觉还不错,特此记录下。
Windows10系统上投影(仅电影屏幕,复制,拓展,仅第二屏幕)类型的作用
Windows10系统上投影(仅电影屏幕,复制,拓展,仅第二屏幕)类型的作用
194 0
Windows10系统上投影(仅电影屏幕,复制,拓展,仅第二屏幕)类型的作用
|
编解码
QT应用编程: 获取系统屏幕数量及分辨率
QT应用编程: 获取系统屏幕数量及分辨率
676 0
PyQt5 技术篇-设置窗口启用默认桌面位置,按屏幕比例
PyQt5 技术篇-设置窗口启用默认桌面位置,按屏幕比例
328 0
PyQt5 技术篇-设置窗口启用默认桌面位置,按屏幕比例
PyQt5 技术篇-透明窗口设置方法,窗口透明度的设置
PyQt5 技术篇-透明窗口设置方法,窗口透明度的设置
788 0
PyQt5 技术篇-透明窗口设置方法,窗口透明度的设置