阿里面试

简介: <span style="font-size:18px">阿里面试主要问的是一些原理性的东西,比如HashMap实现原理,线程间通讯,线程间数据共享,android对java在哪些方法上 有优化,android的异步任务是怎么实现的等等,接下来我们一一讲解<br></span> <p><span style="font-size:18px">1,HashMap实现原理,</span></
阿里面试主要问的是一些原理性的东西,比如HashMap实现原理,线程间通讯,线程间数据共享,android对java在哪些方法上 有优化,android的异步任务是怎么实现的等等,接下来我们一一讲解

1,HashMap实现原理,

2,在Android子线程中初始化handler后,为什么该子线程也能更新UI

答:首先明确在子线程是没办法更新UI线程的视图的。

题目:在一个文件中有 10G 个整数,乱序排列,要求找出中位数。内存限制为 2G。只写出思路即可(内存限制为 2G的意思就是,可以使用2G的空间来运行程序,而不考虑这台机器上的其他软件的占用内存)。

关于中位数:数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值(那么10G个数的中位数,就第5G大的数与第5G+1大的数的均值了)。

解法:

(1)根据整数二进制数高12位取值, 对10G个文件进行分割, 分割成2的12次方(4096)个文件, 每个文件大约有2.5M个整数。

(2)因为4096个文件按整数高12位分割的, 所以文件间是有序的, 例如高12位为0000 0000 0000的文件里的数字是所有数字里最小的, 高12位为 0000 0000 0001的文件中的数字是所有数字中相对次小的。

(3)以此按从小到大的顺序对文件中数字的个数进行统计, 分别记为x1, x2, ..., xk..., 直到某个文件i使x1+x2+...+xi和大于5G结束, 中位数就在这个文件中。然后对这个文件进行处理。

(4)第i个文件中, 大约有2.5M个数字, 取值有1M个,遍历文件对1M个数字出现的次数进行统计。

(5)对1M个取值, 按照从小到大进行加和, 第一个使总和到达5G的数字就是中位数。

目录
相关文章
|
3月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
29天前
|
存储 NoSQL 架构师
阿里面试:聊聊 CAP 定理?哪些中间件是AP?为什么?
本文深入探讨了分布式系统中的“不可能三角”——CAP定理,即一致性(C)、可用性(A)和分区容错性(P)三者无法兼得。通过实例分析了不同场景下如何权衡CAP,并介绍了几种典型分布式中间件的CAP策略,强调了理解CAP定理对于架构设计的重要性。
59 4
|
2月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
2月前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。
|
3月前
|
消息中间件 存储 canal
阿里面试:canal+MQ,会有乱序的问题吗?
本文详细探讨了在阿里面试中常见的问题——“canal+MQ,会有乱序的问题吗?”以及如何保证RocketMQ消息有序。文章首先介绍了消息有序的基本概念,包括全局有序和局部有序,并分析了RocketMQ中实现消息有序的方法。接着,针对canal+MQ的场景,讨论了如何通过配置`canal.mq.partitionsNum`和`canal.mq.partitionHash`来保证数据同步的有序性。最后,提供了多个与MQ相关的面试题及解决方案,帮助读者更好地准备面试,提升技术水平。
阿里面试:canal+MQ,会有乱序的问题吗?
|
3月前
|
消息中间件 架构师 Java
阿里面试:秒杀的分布式事务, 是如何设计的?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试阿里、滴滴、极兔等一线互联网企业时,遇到了许多关于分布式事务的重要面试题。为了帮助大家更好地应对这些面试题,尼恩进行了系统化的梳理,详细介绍了Seata和RocketMQ事务消息的结合,以及如何实现强弱结合型事务。文章还提供了分布式事务的标准面试答案,并推荐了《尼恩Java面试宝典PDF》等资源,帮助大家在面试中脱颖而出。
|
3月前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
3月前
|
Kubernetes 架构师 算法
阿里面试:全国14亿人,统计出重名最多的前100个姓名
文章介绍了如何解决“从全国14亿人的数据中统计出重名人数最多的前100位姓名”的面试题,详细分析了多种数据结构的优缺点,最终推荐使用前缀树(Trie)+小顶堆的组合。文章还提供了具体的Java代码实现,并讨论了在内存受限情况下的解决方案,强调了TOP N问题的典型解题思路。最后,鼓励读者通过系统化学习《尼恩Java面试宝典》提升面试技巧。
阿里面试:全国14亿人,统计出重名最多的前100个姓名
|
3月前
|
存储 缓存 NoSQL
阿里面试题:缓存的一些常见的坑,你遇到过哪些,怎么解决的?
阿里面试题:缓存的一些常见的坑,你遇到过哪些,怎么解决的?
|
3月前
|
存储 Kubernetes 架构师
阿里面试:JVM 锁内存 是怎么变化的? JVM 锁的膨胀过程 ?
尼恩,一位经验丰富的40岁老架构师,通过其读者交流群分享了一系列关于JVM锁的深度解析,包括偏向锁、轻量级锁、自旋锁和重量级锁的概念、内存结构变化及锁膨胀流程。这些内容不仅帮助群内的小伙伴们顺利通过了多家一线互联网企业的面试,还整理成了《尼恩Java面试宝典》等技术资料,助力更多开发者提升技术水平,实现职业逆袭。尼恩强调,掌握这些核心知识点不仅能提高面试成功率,还能在实际工作中更好地应对高并发场景下的性能优化问题。

热门文章

最新文章