原帖地址:http://ogldev.atspace.co.uk/www/tutorial21/tutorial21.html
本篇教程中,我们来学习聚光灯的的光照效果,聚光灯有光源位置,也会随着传播距离增加而衰减,还有照射方向,另外聚光灯增加的特性是,它的照射范围在一个圆锥内,类似探照灯的效果。
下图显示了聚光灯的效果:
聚光灯的方向用黑色的箭头L表示,而我们的光照效果将会限制在两条红线内。我们可以通过光线方向,和红线的夹角来定义光照范围,对于视线向量V,我们可以用L和V进行点积,如果结果小于cone的角,则不会有聚光灯效果。
主要代码:
lighting_technique.h
struct SpotLight : public PointLight
{
Vector3f Direction;
float Cutoff;
SpotLight()
{
Direction = Vector3f(0.0f, 0.0f, 0.0f);
Cutoff = 0.0f;
}
};
在聚光灯类中,我们定义了2个新的属性,光照方向以及光照圆锥夹角。
lighting_technique.cpp
struct SpotLight
{
struct PointLight Base;
vec3 Direction;
float Cutoff;
};
...
uniform int gNumSpotLights;
...
uniform SpotLight gSpotLights[MAX_SPOT_LIGHTS];
定义多个聚光灯光源。
vec4 CalcPointLight(struct PointLight l, vec3 Normal)
{
vec3 LightDirection = WorldPos0 - l.Position;
float Distance = length(LightDirection);
LightDirection = normalize(LightDirection);
vec4 Color = CalcLightInternal(l.Base, LightDirection, Normal);
float Attenuation = l.Atten.Constant +
l.Atten.Linear * Distance +
l.Atten.Exp * Distance * Distance;
return Color / Attenuation;
}
修改点光源shader代码,使用结构作为参数。
vec4 CalcSpotLight(struct SpotLight l, vec3 Normal)
{
vec3 LightToPixel = normalize(WorldPos0 - l.Base.Position);
float SpotFactor = dot(LightToPixel, l.Direction);
if (SpotFactor > l.Cutoff) {
vec4 Color = CalcPointLight(l.Base, Normal);
return Color * (1.0 - (1.0 - SpotFactor) * 1.0/(1.0 - l.Cutoff));
}
else {
return vec4(0,0,0,0);
}
}
上面是计算聚光灯效果的函数。
...
for (int i = 0 ; i < gNumSpotLights ; i++) {
TotalLight += CalcSpotLight(gSpotLights[i], Normal);
}
...
和点光源的光照的计算方式相同,对于多光源,我们可以累加聚光灯的效果,从而得到最终像素的光照颜色。
lighting_technique.cpp
void LightingTechnique::SetSpotLights(unsigned int NumLights, const SpotLight* pLights)
{
glUniform1i(m_numSpotLightsLocation, NumLights);
for (unsigned int i = 0 ; i < NumLights ; i++) {
glUniform3f(m_spotLightsLocation[i].Color, pLights[i].Color.x, pLights[i].Color.y, pLights[i].Color.z);
glUniform1f(m_spotLightsLocation[i].AmbientIntensity, pLights[i].AmbientIntensity);
glUniform1f(m_spotLightsLocation[i].DiffuseIntensity, pLights[i].DiffuseIntensity);
glUniform3f(m_spotLightsLocation[i].Position, pLights[i].Position.x, pLights[i].Position.y, pLights[i].Position.z);
Vector3f Direction = pLights[i].Direction;
Direction.Normalize();
glUniform3f(m_spotLightsLocation[i].Direction, Direction.x, Direction.y, Direction.z);
glUniform1f(m_spotLightsLocation[i].Cutoff, cosf(ToRadian(pLights[i].Cutoff)));
glUniform1f(m_spotLightsLocation[i].Atten.Constant, pLights[i].Attenuation.Constant);
glUniform1f(m_spotLightsLocation[i].Atten.Linear, pLights[i].Attenuation.Linear);
glUniform1f(m_spotLightsLocation[i].Atten.Exp, pLights[i].Attenuation.Exp);
}
}
上面是给uniform变量赋值。
程序执行后效果如下: