OpenCV学习(16) 细化算法(4)

简介: 本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn 在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念: http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/connectivity.html 假设我们有二值图,背景像素值为0,前景像素值为1。

本章我们学习Rosenfeld细化算法,参考资料:http://yunpan.cn/QGRjHbkLBzCrn

在开始学习算法之前,我们先看下连通分量,以及4连通性,8连通性的概念:

http://www.imageprocessingplace.com/downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/connectivity.html

假设我们有二值图,背景像素值为0,前景像素值为1。

我们使用下面的八邻域表示法:

172059~1

     对于前景点像素p1, 如果p2=0,则p1 称作北部边界点。如果p6=0,p1称作南部边界点,p4=0,p1称作东部边界点,p8=0,p1称作西部边界点。

image

p1周围8个像素的值都为0,则p1为孤立点,如果周围8个像素有且只有1个像素值为1,则此时p1称作端点。

另外还要了解的一个概念就是8 simple。

就是我们把p1的值设置为0后,不会改变周围8个像素的8连通性。

下面的三个图中,如果p1=0后,则会改变8连通性image

而下面的则不会改边8连通性,此时可以称像素p1是8 simple

image

Rosenfeld细化算法描述如下:

1. 扫描所有像素,如果像素是北部边界点,且是8simple,但不是孤立点和端点,删除该像素。

2. 扫描所有像素,如果像素是南部边界点,且是8simple,但不是孤立点和端点,删除该像素。

3. 扫描所有像素,如果像素是东部边界点,且是8simple,但不是孤立点和端点,删除该像素。

4. 扫描所有像素,如果像素是西部边界点,且是8simple,但不是孤立点和端点,删除该像素。

执行完上面4个步骤后,就完成了一次迭代,我们重复执行上面的迭代过程,直到图像中再也没有可以删除的点后,退出迭代循环。

算法代码如下:

void gThin::cvRosenfeld(cv::Mat& src, cv::Mat& dst)
{

if(src.type()!=CV_8UC1)
{
printf("只能处理二值或灰度图像\n");
return;
}
//非原地操作时候,copy src到dst
if(dst.data!=src.data)
{
src.copyTo(dst);
}

int i, j, n;
int width, height;
//之所以减1,是方便处理8邻域,防止越界
width = src.cols -1;
height = src.rows -1;
int step = src.step;
int p2,p3,p4,p5,p6,p7,p8,p9;
uchar* img;
bool ifEnd;
cv::Mat tmpimg;
int dir[4] = {-step, step, 1, -1};

while(1)
{
//分四个子迭代过程,分别对应北,南,东,西四个边界点的情况
ifEnd = false;
for(n =0; n < 4; n++)
{
dst.copyTo(tmpimg);
img = tmpimg.data;
for(i = 1; i < height; i++)
{
img += step;
for(j =1; j<width; j++)
{
uchar* p = img + j;
//如果p点是背景点或者且为方向边界点,依次为北南东西,继续循环
if(p[0]==0||p[dir[n]]>0) continue;
p2 = p[-step]>0?1:0;
p3 = p[-step+1]>0?1:0;
p4 = p[1]>0?1:0;
p5 = p[step+1]>0?1:0;
p6 = p[step]>0?1:0;
p7 = p[step-1]>0?1:0;
p8 = p[-1]>0?1:0;
p9 = p[-step-1]>0?1:0;
//8 simple判定
int is8simple = 1;
if(p2==0&&p6==0)
{
if((p9==1||p8==1||p7==1)&&(p3==1||p4==1||p5==1))
is8simple = 0;
}
if(p4==0&&p8==0)
{
if((p9==1||p2==1||p3==1)&&(p5==1||p6==1||p7==1))
is8simple = 0;
}
if(p8==0&&p2==0)
{
if(p9==1&&(p3==1||p4==1||p5==1||p6==1||p7==1))
is8simple = 0;
}
if(p4==0&&p2==0)
{
if(p3==1&&(p5==1||p6==1||p7==1||p8==1||p9==1))
is8simple = 0;
}
if(p8==0&&p6==0)
{
if(p7==1&&(p3==9||p2==1||p3==1||p4==1||p5==1))
is8simple = 0;
}
if(p4==0&&p6==0)
{
if(p5==1&&(p7==1||p8==1||p9==1||p2==1||p3==1))
is8simple = 0;
}
int adjsum;
adjsum = p2 + p3 + p4+ p5 + p6 + p7 + p8 + p9;
//判断是否是邻接点或孤立点,0,1分别对于那个孤立点和端点
if(adjsum!=1&&adjsum!=0&&is8simple==1)
{
dst.at<uchar>(i,j) = 0; //满足删除条件,设置当前像素为0
ifEnd = true;
}

}
}
}

//printf("\n");
//PrintMat(dst);
//PrintMat(dst);
//已经没有可以细化的像素了,则退出迭代
if(!ifEnd) break;
}

}

程序结果:

image

imageimage

程序代码:工程FirstOpenCV11

相关文章
|
1月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习(8)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
7天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
13天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
9天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
6天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
10天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。