OpenCV学习(39) OpenCV中的LBP图像

简介: 本章我们学习LBP图像的原理和使用,因为接下来教程我们要使用LBP图像的直方图来进行脸部识别。 参考资料: http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html http://www.cnblogs.com/mikewolf2002/p/3438166.html       LBP的基本思想是以图像中某个像素为中心,对相邻像素进行阈值比较。

本章我们学习LBP图像的原理和使用,因为接下来教程我们要使用LBP图像的直方图来进行脸部识别。

参考资料:

http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html

http://www.cnblogs.com/mikewolf2002/p/3438166.html

      LBP的基本思想是以图像中某个像素为中心,对相邻像素进行阈值比较。如果中心像素的亮度大于等于它的相邻像素,把相邻像素标记为1,否则标记为0。我们可以用二进制数字来表示LBP图中的每个像素的LBP编码,比如下图中的中心像素,它的LBP编码为:00010011,其十进制值为19。

image

用公式表示就是:

image

其中(xc,yc)是中心像素,ic是灰度值,in是相邻像素的灰度值,s是一个符号函数:

image

在OpenCV的LBP算法中,使用圆形的LBP算子:

 

对于一个点image, 它的近邻点 image用以下公式计算:

image

其中R是半径,p是样本点的个数。

如果就算的结果不在像素坐标上,我们则使用双线性插值进行近似处理。

image

下面的代码中,我们分别实现了通常LBP图和圆形算子LBP图。

      elbp是圆形算子LBP函数,elbp1是通常LBP图,我们分别对lena的图像进行了处理,结果如下所示,从途中可以看出来,使用圆形算子的效果锐度更强。

#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>
#include <fstream>
#include <sstream>

using namespace cv;
using namespace std;

void elbp(Mat& src, Mat &dst, int radius, int neighbors)
{

for(int n=0; n<neighbors; n++)
{
// 采样点的计算
float x = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors)));
float y = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors)));
// 上取整和下取整的值
int fx = static_cast<int>(floor(x));
int fy = static_cast<int>(floor(y));
int cx = static_cast<int>(ceil(x));
int cy = static_cast<int>(ceil(y));
// 小数部分
float ty = y - fy;
float tx = x - fx;
// 设置插值权重
float w1 = (1 - tx) * (1 - ty);
float w2 = tx * (1 - ty);
float w3 = (1 - tx) * ty;
float w4 = tx * ty;
// 循环处理图像数据
for(int i=radius; i < src.rows-radius;i++)
{
for(int j=radius;j < src.cols-radius;j++)
{
// 计算插值
float t = static_cast<float>(w1*src.at<uchar>(i+fy,j+fx) + w2*src.at<uchar>(i+fy,j+cx) + w3*src.at<uchar>(i+cy,j+fx) + w4*src.at<uchar>(i+cy,j+cx));
// 进行编码
dst.at<uchar>(i-radius,j-radius) += ((t > src.at<uchar>(i,j)) || (std::abs(t-src.at<uchar>(i,j)) < std::numeric_limits<float>::epsilon())) << n;
}
}
}
}

void elbp1(Mat& src, Mat &dst)
{

// 循环处理图像数据
for(int i=1; i < src.rows-1;i++)
{
for(int j=1;j < src.cols-1;j++)
{
uchar tt = 0;
int tt1 = 0;
uchar u = src.at<uchar>(i,j);
if(src.at<uchar>(i-1,j-1)>u) { tt += 1 <<tt1; }
tt1++;
if(src.at<uchar>(i-1,j)>u) { tt += 1 <<tt1; }
tt1++;
if(src.at<uchar>(i-1,j+1)>u) { tt += 1 <<tt1; }
tt1++;
if(src.at<uchar>(i,j+1)>u) { tt += 1 <<tt1; }
tt1++;
if(src.at<uchar>(i+1,j+1)>u) { tt += 1 <<tt1; }
tt1++;
if(src.at<uchar>(i+1,j)>u) { tt += 1 <<tt1; }
tt1++;
if(src.at<uchar>(i+1,j-1)>u) { tt += 1 <<tt1; }
tt1++;
if(src.at<uchar>(i-1,j)>u) { tt += 1 <<tt1; }
tt1++;

dst.at<uchar>(i-1,j-1) = tt;
}
}
}

int main()
{
Mat img = cv::imread("../lenna.jpg", 0);
namedWindow("image");
imshow("image", img);

int radius, neighbors;
radius = 1;
neighbors = 8;

//创建一个LBP
//注意为了溢出,我们行列都在原有图像上减去2个半径
Mat dst = Mat(img.rows-2*radius, img.cols-2*radius,CV_8UC1, Scalar(0));
elbp1(img,dst);
namedWindow("normal");
imshow("normal", dst);

Mat dst1 = Mat(img.rows-2*radius, img.cols-2*radius,CV_8UC1, Scalar(0));
elbp(img,dst1,1,8);
namedWindow("circle");
imshow("circle", dst1);

while(1)
cv::waitKey(0);
}

imageimageimage

我们换另外一张图,该图包括不同光照下的四副照片,再来看看LBP图的效果:

image

image

image

 

 

程序代码:

FirstOpenCV36

相关文章
|
2月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
412 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
3月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
51 4
|
3月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
4月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
WK
|
4月前
|
编解码 计算机视觉 Python
如何在OpenCV中进行图像转换
在OpenCV中,图像转换涉及颜色空间变换、大小调整及类型转换等操作。常用函数如`cvtColor`可实现BGR到RGB、灰度图或HSV的转换;`resize`则用于调整图像分辨率。此外,通过`astype`或`convertScaleAbs`可改变图像数据类型。对于复杂的几何变换,如仿射或透视变换,则可利用`warpAffine`和`warpPerspective`函数实现。这些技术为图像处理提供了强大的工具。
WK
117 1
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
133 2
|
6月前
|
算法 计算机视觉
【Qt&OpenCV 图像的感兴趣区域ROI】
【Qt&OpenCV 图像的感兴趣区域ROI】
191 1
|
6月前
|
运维 算法 计算机视觉
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
【Qt&OpenCV 图像的模板匹配 matchTemplate/minMaxLoc】
83 1
|
6月前
|
存储 编解码 算法
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
【Qt&OpenCV 检测图像中的线/圆/轮廓 HoughLinesP/HoughCircles/findContours&drawContours】
98 0
|
5月前
|
机器学习/深度学习 XML 计算机视觉
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习库,它提供了大量的函数和工具,用于处理图像和视频数据。