GPGPU OpenCL/CUDA 高性能编程的10大注意事项

简介: 1.展开循环   如果提前知道了循环的次数,可以进行循环展开,这样省去了循环条件的比较次数。但是同时也不能使得kernel代码太大。   循环展开代码例子: 1 #include 2 using namespace std; 3 4 int main(){ 5 ...

1.展开循环

  如果提前知道了循环的次数,可以进行循环展开,这样省去了循环条件的比较次数。但是同时也不能使得kernel代码太大。

  循环展开代码例子:

 1 #include<iostream>
 2 using namespace std;
 3 
 4 int main(){
 5     int sum=0;
 6     for(int i=1;i<=100;i++){
 7         sum+=i;
 8     }
 9 
10     sum=0;
11     for(int i=1;i<=100;i=i+5){
12         sum+=i;
13         sum+=i+1;
14         sum+=i+2;
15         sum+=i+3;
16         sum+=i+4;
17     }
18     return 0;
19 }
View Code

2.避免处理非标准化数字

  OpenCL中非标准化数字,是指数值小于最小能表示的正常值。由于计算机的位数有限,表示数据的范围和精度都不可能是无限的。(具体可以查看IEEE 754标准,http://zh.wikipedia.org/zh-cn/IEEE_754)

  在OpenCL中使用非标准化数字,可能会出现“除0操作”,处理很耗时间。

  如果在kernel中“除0”操作影响不大的话,可以在编译选项中加入-cl-denorms-are-zero,如:

    clBuildProgram(program, 0, NULL, "-cl-denorms-are-zero", NULL, NULL);

3.通过编译器选项传输常量基本类型数据到kernel,而不是使用private memory

  如果程序中需要给kernel 传输常量基本类型数据,最好是使用编译器选项,比如宏定义。而不是,每个work-item都定义一个private memory变量。这样编译器在编译时,会直接进行变量替换,不会定义新的变量,节省空间。

  如下面代码所示(Dmacro.cpp):

1 #include<stdio.h>
2 int main()
3 {
4     int a=SIZE;
5     printf("a=%d, SIZE=%d\n",a,SIZE);
6     return 0;
7 }
View Code

  编译:

  g++ -DSIZE=128 -o A Dmacro.cpp

 4.如果共享不重要的话,保存一部分变量在private memory而不是local memory

   work-item访问private memory速度快于local memory,因此可以把一部分变量数据保存在private memory中。当然,当private memory容量满时,GPU硬件会自动将数据转存到local memory中。

5.访问local memory应避免bank conflicts

   local memory被组织为一个一个的只能被单独访问的bank,bank之间交叉存储数据,以便连续的32bit被保存在连续的bank中。如下图所示:

  (1)如果多个work-item访问连续的local memory数据,他们就能最大限度的实现并行读写。

  (2)如果多个work-item访问同一个bank中的数据,他们就必须顺序执行,严重降低数据读取的并行性。因此,要合理安排数据在local memory中的布局。

  (3)特殊情况,如果一个wave/warp中的线程同时读取一个local memory中的一个地址,这时将进行广播,不属于bank 冲突。

6.避免使用”%“操作

  "%"操作在GPU或者其他OpenCL设备上需要大量的处理时间,如果可能的话尽量避免使用模操作。

7.kernel中重用(Reuse) private memory,为同一变量定义不同的宏

   如果kernel中有两个或者以上的private variable在代码中使用(比如一个在代码段A,一个在代码段B中),但是他们可以被数值相同。

  也就是当一个变量用作不同的目的时,为了避免代码中的命名困惑,可以使用宏。在一个变量上定义不同的宏。

  如下面代码所示:

 1 #include<stdio.h>
 2 int main(){
 3     int i=4;
 4     #define EXP i
 5             printf("EXP=%d\n",EXP);
 6     
 7     #define COUNT i
 8             printf("COUNT=%d\n",COUNT);
 9     getchar();
10     return 0;
11 }
View Code

8.对于(a*b+c)操作,尽量使用 fma function

  如果定义了“FP_FAST_FMAF”宏,就可以使用函数fma(a,b,c)精确的计算a*b+c。函数fma(a,b,c)的执行时间小于或等于计算a*b+c。

9.在program file 文件中对非kernel的函数使用inline

  inline修饰符告诉编译器在调用inline函数的地方,使用函数体替换函数调用。虽然会使得编译后的代码占用memory增加,但是省去了函数调用时上下、函数调用栈的切换操作,节省时间。

10.避免分支预测惩罚,应该尽量使得条件判断为真的可能性大

  现代处理器一般都会进行“分支预测”,以便更好的提前“预取”下一条要执行的指令,使得“取指令、译码分析、执行、保存”尽可能的并行。

  在“分支预测”出错时,提前取到的指令,不是要执行的指令,就需要根据跳转指令,进行重新取指令,就是“分支预测惩罚”。

  看如下的代码:

 1 #include<stdio.h>
 2 int main()
 3 {
 4    int i=1;
 5    int b=0;
 6    if(i == 1)
 7            b=1;
 8     else
 9         b=0;
10     return 1;
11 }

  对应的汇编代码:

  

  (movl 赋值,cmpl 比较,jne 不等于跳转,jmp 无条件跳转)

  从上面的汇编指令代码看出,如果比较(<main+24>)结果相等,则执行<main+26>也就是比较指令的下一条指令,对应b=1顺序执行;如果比较(<main+24>)结果不相等,则执行跳转到<main+35>,不是顺序执行。

  当然,有的处理器可能会根据以往“顺序执行”与“跳转执行”的比例来进行分支预测,但是这也是需要积累的过程。况且并不是,每个处理器多能这样只能。

本文:http://www.cnblogs.com/xudong-bupt/p/3630952.html

  最后,上面的10个tips,能过提升kernel函数的性能,但是你应该进行具体的性能分析知道程序中最耗时的地方在哪里。当然了,只有通过实验才能真正学会OpenCL高性能编程。

 

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
Unix 异构计算 Windows
带你读《基于CUDA的GPU并行程序开发指南》之一:CPU并行编程概述
本书旨在帮助读者了解与基于CUDA的并行编程技术有关的基本概念,并掌握实用c语言进行GPU高性能编程的相关技巧。本书第一部分通过CPU多线程编程解释了并行计算,使得没有太多并行计算基础的读者也能毫无阻碍地进入CUDA天地;第二部分重点介绍了基于CUDA的GPU大规模并行程序的开发与实现,并通过大量的性能分析帮助读者理解如何开发一个好的GPU并行程序以及GPU架构对程序性能的影响;本书的第三部分介绍了一些常用的CUDA库。
|
并行计算 C++
《CUDA高性能并行计算》----0.8 用户指南
我们编写本书的目的就是让广大的技术型读者积极参与到使用CUDA进行GPU并行计算的洪流之中。作为比喻,我们邀请你进行一次基于GPU并行计算的旅程,而本书即是本旅程的导游手册。比喻为导游手册在许多方面都是恰当的,其中包括:
1350 0
|
并行计算 API C语言
《CUDA高性能并行计算》----2.2 需要知道的CUDA API和C语言拓展
CUDA并行所需要的基本任务包含以下几点: 使用特定的网格维度加载核函数(线程块和线程的数目)。 明确哪些函数编译后运行在设备(GPU)上、主机(CPU)上,或者两者之上。 访问和运用线程块和线程的计算索引值。 分配内存和传输数据。
1860 0
|
openCL Java C++
《OpenCL实战》一第一部分 OpenCL编程基础
第一部分展示的是OpenCL语言,我们将详细讨论OpenCL的数据结构和函数,并通过例子来了解它们在应用程序中的作用。
2385 0
|
并行计算 异构计算
《CUDA高性能并行计算》----0.2 学习CUDA的“须知”
基于GPU的并行计算是真正改变行业面貌的技术。你需要知道基于GPU的并行计算以保持不被如下工程领域抛下:应用计算、工程设计和分析、计算机仿真、机器学习、视觉和成像系统或任何其他一些计算密集型领域。基于GPU的并行计算对一些计算任务可以减少数个数量级的时间消耗,所以那些本来需要持续运行若干星期才能完成的大型计算任务(如在一个大的数据集训练机器学习系统),现在可以在数小时执行结束。
2108 0
|
并行计算 芯片 异构计算
《CUDA高性能并行计算》----第2章 CUDA基础知识 2.1 CUDA并行模式
在第1章中我们的讨论以计算从一个参考点到一组输入位置距离的函数distance-Array()结束。这个计算完全是串行的,距离数值是根据一个for循环中的计数i和输入数组的范围顺序计算的。但是,任何一个距离的计算相对于其他计算都是独立的。
1451 0