LruCache算法原理及实现

简介: LruCache算法原理及实现LruCache算法原理LRU为Least Recently Used的缩写,意思也就是近期最少使用算法。LruCache将LinkedHashMap的顺序设置为LRU顺序来实现LRU缓存,每次调用get并获取到值(也就是从内存缓存中命中),则将该对象移到链表的尾端。

LruCache算法原理及实现

LruCache算法原理

LRULeast Recently Used的缩写,意思也就是近期最少使用算法。LruCacheLinkedHashMap的顺序设置为LRU顺序来实现LRU缓存,每次调用get并获取到值(也就是从内存缓存中命中),则将该对象移到链表的尾端。调用put插入新的对象也是存储在链表尾端,这样当内存缓存达到设定的最大值时,将链表头部的对象(近期最少用到的)移除。

基于LinkedHashMapLRUCache的实现,关键是重写LinkedHashMapremoveEldestEntry方法,在LinkedHashMap中该方法默认返回false(LRUCache本身未考虑线程安全的问题),这样此映射的行为将类似于正常映射,即永远不能移除最旧的元素。

LruCache算法实现的思路

  • 按从近期访问最少到近期访问最多的顺序(即访问顺序)来保存元素,LinkedHashMap提供了LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)构造函数,该哈希映射的迭代顺序就是最后访问其条目的顺序,这种映射很适合构建LRU缓存。
  • LinkedHashMap提供了removeEldestEntry(Map.Entry eldest)方法。该方法在每次添加新条目时移除最旧条目,但该方法默认返回false,这样,此映射的行为将类似于正常映射,即永远不能移除最旧的元素。因而需要重写该方法。

基于LinkedHashMap的LruCache具体实现

import java.util.LinkedHashMap;
import java.util.Map;

public class LruCache<K, V> {
    private LinkedHashMap<K, V> map;//链表存储对象

    private int cacheSize;//cache大小
    private int hitCount;//命中次数
    private int missCount;//未命中次数

    public synchronized final int getCacheSize() {
        return cacheSize;
    }

    public synchronized final int getHitCount() {
        return hitCount;
    }

    public synchronized final int getMissCount() {
        return missCount;
    }

    static final int DEFAULT_CACHE_SIZE = 2;//cache默认大小

    public V put(K key, V value) {
        return map.put(key, value);
    }

    public V get(Object key) {

        if (null == key) {
            throw new NullPointerException(" key == null ");
        }

        V val = null;
        synchronized (this) {
            val = map.get(key);
            if (null != val) {
                hitCount += 1;
                return val;
            }

            missCount += 1;
        }

        return val;
    }

    public LruCache() {
        this(DEFAULT_CACHE_SIZE);
    }

    public LruCache(int cacheSize) {
        this.cacheSize = cacheSize;
        int hashTableSize = (int) (Math.ceil(cacheSize / 0.75f) + 1);

        //LruCache算法实现的关键

        //1、按从近期访问最少到近期访问最多的顺序(即访问顺序)来保存元素,那么请使用下面的构造方法构造LinkedHashMap
        //public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder); //该哈希映射的迭代顺序就是最后访问其条目的顺序,这种映射很适合构建LRU缓存。
        //2、LinkedHashMap提供了removeEldestEntry(Map.Entry<K,V> eldest)方法。该方法可以提供在每次添加新条目时移除最旧条目的实现程序,默认返回false,这样,此映射的行为将类似于正常映射,即永远不能移除最旧的元素。
        map = new LinkedHashMap<K, V>(hashTableSize, 0.75f, true){
            private static final long serialVersionUID = 1L;

            @Override
            protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
                System.out.println(" ***** size=" + size() + " cacheSize=" + LruCache.this.cacheSize + " ****");
//                return super.removeEldestEntry(eldest);
                return size() > LruCache.this.cacheSize;
            }
        };
    }

    public static void main(String[] args) {

        LruCache<String, String> lruCache = new LruCache<String, String>(3);
        lruCache.put("1", "1");
        lruCache.put("2", "2");
        lruCache.put("3", "3");
        lruCache.put("4", "4");
        lruCache.put("5", "5");

        System.out.println("==========================================================================");
        System.out.println("hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println("==========================================================================");

        System.out.println(lruCache.get("1") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("2") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("3") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        lruCache.put("6", "6");
        lruCache.put("7", "7");
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" + lruCache.getMissCount());
        lruCache.put("8", "8");

        System.out.println(lruCache.get("5") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());

        System.out.println("==========================================================================");
        for(Map.Entry<String, String> entry : lruCache.map.entrySet()) {
            System.out.println(entry.getKey()+":"+entry.getValue());
        }

    }
}

执行结果

***** size=1 cacheSize=3 ****
***** size=2 cacheSize=3 ****
***** size=3 cacheSize=3 ****
***** size=4 cacheSize=3 ****
***** size=4 cacheSize=3 ****
==========================================================================
hitCount=0 missCount=0
==========================================================================
null hitCount=0 missCount=1
null hitCount=0 missCount=2
3 hitCount=1 missCount=2
4 hitCount=2 missCount=2
4 hitCount=3 missCount=2
4 hitCount=4 missCount=2
4 hitCount=5 missCount=2
***** size=4 cacheSize=3 ****
***** size=4 cacheSize=3 ****
4 hitCount=6 missCount=2
***** size=4 cacheSize=3 ****
null hitCount=6 missCount=3
==========================================================================
7:7
4:4
8:8

参考文档:

相关文章
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
273 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
2月前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
103 0
理解CAS算法原理
|
3月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
2月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
112 3
|
3月前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
3月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
3月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
111 4
|
3月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
144 3
|
3月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
4月前
|
算法 数据库 索引
HyperLogLog算法的原理是什么
【10月更文挑战第19天】HyperLogLog算法的原理是什么
240 1