开发者社区> 机械键盘> 正文

Mysql第六天 查询 1

简介: <div class="markdown_views"> <p>查询的一般流程是 客户端到服务器,这之间有网络。 在服务器上进行解析,生成执行计划,执行。并且返回给客户端。 执行中又会包含大量的调用存储引擎检索数据,以及检索后的处理比如排序等。 <br> 总体来说,时间一般花费在网络、CPU计算、生成统计信息、执行计划,锁等待,内存不足时的I/O操作等等。</p> <p>先
+关注继续查看

查询的一般流程是 客户端到服务器,这之间有网络。 在服务器上进行解析,生成执行计划,执行。并且返回给客户端。 执行中又会包含大量的调用存储引擎检索数据,以及检索后的处理比如排序等。
总体来说,时间一般花费在网络、CPU计算、生成统计信息、执行计划,锁等待,内存不足时的I/O操作等等。

先说两个用于查看性能指标的sql.

SELECT @@profiling;
SET profiling = 1;
select count(*) from test;
show profiles;
// 来查看语句的执行时间,这个能够最直观的看到sql的快慢

第二个语句是:

explain select * from biz_pay_task where jd_order_id=42596246804;

其结果如下:
+—-+————-+————–+——+—————+—————+———+——-+——+——-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+————–+——+—————+—————+———+——-+——+——-+
| 1 | SIMPLE | biz_pay_task | ref | i_jd_order_id | i_jd_order_id | 8 | const | 1 | |
+—-+————-+————–+——+—————+—————+———+——-+——+——-+
主要是select_type 、key 、rows、type 这几个选项

  • key 使用了哪个索引
  • rows mysql评估的可能需要检索的数量
  • type对应了查询所使用的类型,比如All代表全表扫描,ref代表索引扫描,还会有范围扫描、唯一索引扫描等等。最好都能够达到ref的级别。

通常可以从如下几个方面进行考虑

是否向数据库请求了不需要的数据

  • 没有使用LIMIT,而是查处了大量的数据,只是用了前几行
  • 多表关联时返回全部列,这样会有很多重复列,最好明确指定
  • 默认使用select * 尽量只返回需要的列

是否扫描了额外的记录

这个不是很好确定,通常加上合适的索引之后就能够减少扫描的数量,但是对于分组统计类的sql却不能使用索引的方式了。一般我们可以有如下的方式优化:

  • 使用覆盖索引
  • 该表库表结构,使用单独的汇总表
  • 重写复杂查询,让Mysql优化器能够以更好的方式执行这个查询

重构查询方式

一个复杂查询还是多个简单查询

这个冲突放大了就是多个简单sql语句,然后在代码里计算,还是用存储过程把所有计算都完成。
以前认为数据库查询计算很快,而跟客户端之间的通信的开销是很大的。但是现在可能会越来越考虑可用性,重用性等,一个复杂查询变得不那么重要了。

切分查询

每个sql的功能完全一样,但是只是完成一小部分。
最经典的使用方式是分页,也就是使用limit关键字, 可以分页查或者是分页删除。
特别是删除,因为会占用事务日志和锁,因此更有必要使用分页。我们可以用下面的伪代码来表示分页删除:

rows_affected = 0;
do{
    rows_affected = do_query(DELETE FROM test LIMIT 10000)
} while rows_affected > 0;

分解关联查询

把join分解为多个查询,比如:

select * from Student s JOIN grade g on s.gradeId = g.id where s.name="张三";
// 可以改写为:
SELECT * FROM Student s where s.name="张三";
SELECT * FROM Grade g where g.id in (#上面查出的结果#);

这样看起来一模一样,并且还会增加连接次数。但是却能带来如下的好处:

  • 让缓存效率更高。 如果第一个查询已经执行过,那么就可以跳过。
  • 减少锁竞争
  • 在应用层做关联,可以对数据库进行拆分,获得更好的扩展性
  • 使用IN()代替关联查询,本身会比关联查询更高效
  • 在应用层可以重用第一次的查询结果,比如做缓存。

查询执行基础

这里写图片描述

  • 客户端发送请求给服务器
  • 服务器先查询缓存,如果命中直接返回
  • 如果没命中进行解析及预处理,再由优化器生成执行计划
  • 根据执行计划调用API来执行查询
  • 将结果返回给客户端

Mysql 客户端与服务器端的通信

半双工的通信方式,决定了不能限制流量,发出请求后只能等待结果。
下面的参数能够设置接收包的大小,太小了,可能导致请求失败

show VARIABLES like '%max_allowed_packet%';
//my.cnf
max_allowed_packet = 20M
// 命令
set global max_allowed_packet = 2*1024*1024*10

通常使用mysql的客户端包,都是从mysql服务器中获取了sql中返回的所有数据,并且缓存,之后操作的都是缓存中的数据。 这样有个问题是如果结果集过大有可能内存溢出。
JDBC可以用如下的办法来不使用这种返回的方式:

    stmt = (com.mysql.jdbc.Statement) con.createStatement();
    stmt.setFetchSize(1);
    // 打开流方式返回机制
    stmt.enableStreamingResults();
    // 类似利用mysql机制的方法还有:setLocalInfileInputStream ,可以跟LOAD DATA LOCAL INFILE一起快速插入

连接状态

SHOW FULL PROCESSLIST;

+———+——+———————-+——————–+———+——+——-+———————–+
| Id | User | Host | db | Command | Time | State | Info |
+———+——+———————-+——————–+———+——+——-+———————–+
| 1897957 | root | 192.168.147.34:60520 | biz | Sleep | 172 | | NULL |
通过State能够看到连接线程的状态。
Sleep是线程等待客户端发送新请求
Query是正在查询,等等。

查询缓存

是通过大小写敏感的 Hash查找来实现的,因此只要sql改动了一点就不能命中了

词法分析与预处理

分析称解析树, 其中如果存在语法错误则直接返回

查询优化器

生成执行计划。
每个sql语句都可能有多种执行计划,mysql使用预判的方式来估算最小成本的计划。下面的语句可以看一下mysql的估算结果:

SELECT SQL_NO_CACHE COUNT(*) FROM biz_pay_task;
SHOW STATUS LIKE 'Last_query_cost';

返回的是mysql认为的要做多少个页的随机查找才能完成任务。

mysql通常有如下的优化方式:

  • 重定义关联表顺序
  • 等价变换规则: 移除恒等,合并比较等等,比如 1=1 AND a > 5会转化为 a > 5
  • 优化COUNT(), MIN(), MAX()
    MIN(),MAX()分别对应B-Tree的索引最前与最后,基本相当于常量引用的效率了
EXPLAIN select MAX(jd_order_id) FROM biz_pay_task;
// 结果: Extra : Select tables optimized away

表示启用了此项优化。
COUNT(),需要存储引擎支持,比如有的存储引擎可以直接返回这个变量,不用去数

  • 预估并转化为常量表达式
// 查出一个订单的扩展字段之:第三方订单号。
EXPLAIN SELECT b.id, o.third_order_id FROM biz_pay_task b INNER JOIN order_snap o ON o.virtual_order_id = b.id WHERE b.id = 1;

结果:
+—-+————-+——-+——-+—————+———+———+——-+——+————-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+——-+——-+—————+———+———+——-+——+————-+
| 1 | SIMPLE | b | const | PRIMARY | PRIMARY | 8 | const | 1 | Using index |
| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 61 | Using where |
+—-+————-+——-+——-+—————+———+———+——-+——+————-+
可以看到是转化为两次查询,第一次是主键查询,第二次是一个where 查询,第二个where查询的时候会直接使用o.virtual_order_id=1来进行替换。使用常量值。

另外上面说的MIN()的情况也应该属于这一种

  • 覆盖索引扫描
  • 提前终止查询
    比如Limit,到指定的位置就不往下查找了
    比如下旬一个不存在的数据,从索引上就直接返回了,不会去查数据
EXPLAIN SELECT b.id
 FROM biz_pay_task b WHERE b.id = -1;
 // Extra是:Impossible WHERE noticed after reading const tables 

比如NOT EXIST, LEFT JOIN, lift join再来个例子:
查询很有赠品的订单
SELECT b.order_id FROM order LEFT JOIN order_sku o ON order.order_id = o.order_id WHERE o.skuName IS NULL;
这个查询会找到第一个skuName 为NULL之后进入下一个订单,而不会全部扫描。

其实跟Java的return, break; continue这种语法有点像。

  • IN mysql会对其内容进行排序,使用二分查找的方式,这样比其他的数据库要好,其他基本上都是跟多个OR是等价的。

关联查询

Mysql中对于关联查询的操作很简单,就是嵌套循环。即先遍历左边中符合条件的,然后根据每一个左表符合条件的去查右表中的内容。

包括子查询 也是使用的这种方式。

Mysql在执行时会把sql语句转化为执行树,是一颗左侧深度优先的数,如下图:
这里写图片描述

关联查询优化
主要是对于内联的操作。因为有很多情况内联的表的顺序不重要,因此mysql可能会改变遍历顺序优先遍历数据很少的表。
举个栗子:

EXPLAIN SELECT v.id, o.third_order_id FROM virtual_order v
 INNER JOIN order_snap o  ON v.id = o.virtual_order_id;
// 这个sql跟 order_snap o INNER JOIN virtual_order v的效果是一样的。执行的时候能够看到:

+—-+————-+——-+——–+—————+———+———+——————————–+——+————-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+—-+————-+——-+——–+—————+———+———+——————————–+——+————-+
| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 344 | |
| 1 | SIMPLE | v | eq_ref | PRIMARY | PRIMARY | 8 | virtual_biz.o.virtual_order_id | 1 | Using index |
+—-+————-+——-+——–+—————+———+———+——————————–+——+————-+
能够看到先执行的o表, 因为mysql的优化点在于选择驱动表,其会简单的选择数据少的为驱动表。

但是如果是很多表关联的情况下, 因为组合会很多所以有可能会转为其他的方式进行选择。通常不建议关联很多表

此外我们可以指定连接的顺序,选择驱动表。 使用STRAIGHT JOIN 关键字。 这样我们可以保证驱动表是我们想要的,比如我们要尽量使得排序行为在驱动表中,这样就会使查询更快。

排序优化

基于索引排序, 使用快排,如果内存不够则先对数据分块,然后每块分别排序,最后merge.

此外有两种排序算法
当不超过max_length_for_sort_data时,使用单次传输,否则时两次传输。
单次传输时新版本才有的,会加载所有的列进行排序,这样减少I/O,增加占用内存
两次传输,第一次加载排序列,排序,排好后再去拿其他数据。这样减少占用空间,但是会增加很多随机I/O。

当关联查询需要排序时,如果在驱动表上,则会先排序。
不在则会先计算关联结果,然后放到临时表中,再进行排序。

查询执行引擎

生成的执行计划是一个数据结构。
执行过程会通过api调用很多次存储引擎。

返回结果给客户端

返回结果集时会判断能否缓存,如果可以会先缓存。
结果是增量返回的,因此在API端调用的时候可以设置,是否增量接收。

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
阿里云服务器怎么设置密码?怎么停机?怎么重启服务器?
如果在创建实例时没有设置密码,或者密码丢失,您可以在控制台上重新设置实例的登录密码。本文仅描述如何在 ECS 管理控制台上修改实例登录密码。
19696 0
阿里云ECS云服务器初始化设置教程方法
阿里云ECS云服务器初始化是指将云服务器系统恢复到最初状态的过程,阿里云的服务器初始化是通过更换系统盘来实现的,是免费的,阿里云百科网分享服务器初始化教程: 服务器初始化教程方法 本文的服务器初始化是指将ECS云服务器系统恢复到最初状态,服务器中的数据也会被清空,所以初始化之前一定要先备份好。
13759 0
阿里云服务器端口号设置
阿里云服务器初级使用者可能面临的问题之一. 使用tomcat或者其他服务器软件设置端口号后,比如 一些不是默认的, mysql的 3306, mssql的1433,有时候打不开网页, 原因是没有在ecs安全组去设置这个端口号. 解决: 点击ecs下网络和安全下的安全组 在弹出的安全组中,如果没有就新建安全组,然后点击配置规则 最后如上图点击添加...或快速创建.   have fun!  将编程看作是一门艺术,而不单单是个技术。
17986 0
阿里云服务器如何登录?阿里云服务器的三种登录方法
购买阿里云ECS云服务器后如何登录?场景不同,阿里云优惠总结大概有三种登录方式: 登录到ECS云服务器控制台 在ECS云服务器控制台用户可以更改密码、更换系.
24793 0
+关注
机械键盘
人在成都 互联网相关技术爱好者
125
文章
6
问答
文章排行榜
最热
最新
相关电子书
更多
OceanBase 入门到实战教程
立即下载
阿里云图数据库GDB,加速开启“图智”未来.ppt
立即下载
实时数仓Hologres技术实战一本通2.0版(下)
立即下载