<转>windows 下 线各同步方法

简介: No Synchronization This first example illustrates two unsynchronized threads. The main loop, which is the primary thread of a process, prints the contents of a global array of integers.

No Synchronization

This first example illustrates two unsynchronized threads. The main loop, which is the primary thread of a process, prints the contents of a global array of integers. The thread called "Thread" continuously populates the global array of integers.

  #include <process.h>
  #include <stdio.h>
  
  int a[ 5 ];
  
  void Thread( void* pParams )
  { int i, num = 0;
  
    while ( 1 )
    { 
       for ( i = 0; i < 5; i++ ) a[ i ] = num;
       num++;
    }
  }
  
  int main( void )
  { 
     _beginthread( Thread, 0, NULL );
  
     while( 1 )
        printf("%d %d %d %d %d\n", 
               a[ 0 ], a[ 1 ], a[ 2 ],
               a[ 3 ], a[ 4 ] );
  
   return 0;
  }

Note in this sample output, the numbers in red illustrate a state where the primary thread preempted the secondary thread in the middle of populating the values of the array:

81751652 81751652 81751651 81751651 81751651
81751652 81751652 81751651 81751651 81751651
83348630 83348630 83348630 83348629 83348629
83348630 83348630 83348630 83348629 83348629
83348630 83348630 83348630 83348629 83348629

If you are running Windows 9x/NT/2000, you can run this program by clicking here. After the program begins to run, press the "Pause" key stop the display output (this stops the primary thread's I/O, but the secondary thread continues to run in the background) and any other key to restart it.

Critical Section Objects

What if your main thread needed all elements of the array to processed prior to reading? One solution is to use a critical section.

Critical section objects provide synchronization similar to that provided by mutex objects, except critical section objects can be used only by the threads of a single process. Event, mutex, and semaphore objects can also be used in a single-process application, but critical section objects provide a slightly faster, more efficient mechanism for mutual-exclusion synchronization. Like a mutex object, a critical section object can be owned by only one thread at a time, which makes it useful for protecting a shared resource from simultaneous access. There is no guarantee about the order in which threads will obtain ownership of the critical section, however, the system will be fair to all threads.

  #include <windows.h>
  #include <process.h>
  #include <stdio.h>
  
  CRITICAL_SECTION cs;
  int a[ 5 ];
  
  void Thread( void* pParams )
  {
    int i, num = 0;
  
    while ( TRUE )
    {
       EnterCriticalSection( &cs );
       for ( i = 0; i < 5; i++ ) a[ i ] = num;
       LeaveCriticalSection( &cs );
       num++;
    }
  }
  
  int main( void )<br>
  { 
    InitializeCriticalSection( &cs );
    _beginthread( Thread, 0, NULL );
  
    while( TRUE )
    {
       EnterCriticalSection( &cs );
       printf( "%d %d %d %d %d\n", 
               a[ 0 ], a[ 1 ], a[ 2 ],
               a[ 3 ], a[ 4 ] );
       LeaveCriticalSection( &cs );
    }
    return 0;
  }

If you are running Windows 9x/NT/2000, you can run this program by clicking here.

Mutex Objects

A mutex object is a synchronization object whose state is set to signaled when it is not owned by any thread, and non-signaled when it is owned. Only one thread at a time can own a mutex object, whose name comes from the fact that it is useful in coordinating mutually exclusive access to a shared resource. For example, to prevent two threads from writing to shared memory at the same time, each thread waits for ownership of a mutex object before executing the code that accesses the memory. After writing to the shared memory, the thread releases the mutex object.

Two or more processes can call CreateMutex to create the same named mutex. The first process actually creates the mutex, and subsequent processes open a handle to the existing mutex. This enables multiple processes to get handles of the same mutex, while relieving the user of the responsibility of ensuring that the creating process is started first. When using this technique, you should set the bInitialOwner flag to FALSE; otherwise, it can be difficult to be certain which process has initial ownership.

Multiple processes can have handles of the same mutex object, enabling use of the object for interprocess synchronization. The following object-sharing mechanisms are available:

  • A child process created by the CreateProcess function can inherit a handle to a mutex object if thelpMutexAttributes parameter of CreateMutex enabled inheritance.
  • A process can specify the mutex-object handle in a call to the DuplicateHandle function to create a duplicate handle that can be used by another process.
  • A process can specify the name of a mutex object in a call to the OpenMutex or CreateMutex function.

Generally speaking, if you are synchronizing threads within the same process, a critical section object is more efficient.

  #include <windows.h>
  #include <process.h>
  #include <stdio.h>
  
  HANDLE hMutex;
  int a[ 5 ];
  
  void Thread( void* pParams )
  { 
     int i, num = 0;
  
     while ( TRUE )
     { 
        WaitForSingleObject( hMutex, INFINITE );
        for ( i = 0; i < 5; i++ ) a[ i ] = num;
        ReleaseMutex( hMutex );
        num++;
     }
  }
  
  int main( void )
  {
     hMutex = CreateMutex( NULL, FALSE, NULL );
     _beginthread( Thread, 0, NULL );
  
     while( TRUE )<br>
     {
        WaitForSingleObject( hMutex, INFINITE );
        printf( "%d %d %d %d %d\n", 
                a[ 0 ], a[ 1 ], a[ 2 ],
                a[ 3 ], a[ 4 ] );
        ReleaseMutex( hMutex );
     }
     return 0;
  }

If you are running Windows 9x/NT/2000, you can run this program by clicking here.

Event Objects

What if we want to force the secondary thread to run each time the primary thread finishes printing the contents of the global array, so that the values in each line of output is only incremented by one?

An event object is a synchronization object whose state can be explicitly set to signaled by use of the SetEvent orPulseEvent function. Following are the two types of event object.

Object Description
Manual-reset event An event object whose state remains signaled until it is explicitly reset to non-signaled by the ResetEventfunction. While it is signaled, any number of waiting threads, or threads that subsequently specify the same event object in one of the wait functions, can be released.
Auto-reset event An event object whose state remains signaled until a single waiting thread is released, at which time the system automatically sets the state to non-signaled. If no threads are waiting, the event object's state remains signaled.

The event object is useful in sending a signal to a thread indicating that a particular event has occurred. For example, in overlapped input and output, the system sets a specified event object to the signaled state when the overlapped operation has been completed. A single thread can specify different event objects in several simultaneous overlapped operations, then use one of the multiple-object wait functions to wait for the state of any one of the event objects to be signaled.

A thread uses the CreateEvent function to create an event object. The creating thread specifies the initial state of the object and whether it is a manual-reset or auto-reset event object. The creating thread can also specify a name for the event object. Threads in other processes can open a handle to an existing event object by specifying its name in a call to the OpenEvent function. For additional information about names for mutex, event, semaphore, and timer objects, see Interprocess Synchronization.

A thread can use the PulseEvent function to set the state of an event object to signaled and then reset it to non-signaled after releasing the appropriate number of waiting threads. For a manual-reset event object, all waiting threads are released. For an auto-reset event object, the function releases only a single waiting thread, even if multiple threads are waiting. If no threads are waiting, PulseEvent simply sets the state of the event object to non-signaled and returns.

  #include <windows.h>
  #include <process.h>
  #include <stdio.h>
  
  HANDLE hEvent1, hEvent2;
  int a[ 5 ];
  
  void Thread( void* pParams )
  {
     int i, num = 0;

     while ( TRUE )
     {
        WaitForSingleObject( hEvent2, INFINITE );
        for ( i = 0; i < 5; i++ ) a[ i ] = num;
        SetEvent( hEvent1 );
        num++;
     }
  }
  
  int main( void )
  {
     hEvent1 = CreateEvent( NULL, FALSE, TRUE, NULL );
     hEvent2 = CreateEvent( NULL, FALSE, FALSE, NULL );
  
     _beginthread( Thread, 0, NULL );
  
     while( TRUE )
     { 
        WaitForSingleObject( hEvent1, INFINITE );
        printf( "%d %d %d %d %d\n", 
                a[ 0 ], a[ 1 ], a[ 2 ],
                a[ 3 ], a[ 4 ] );
        SetEvent( hEvent2 );
     }
     return 0;
  }

If you are running Windows 9x/NT/2000, you can run this program by clicking here.

Summary of Synchronization Objects

The MSDN News for July/August 1998 has a front page article on Synchronization Objects. The following table is from that article:

Name Relative speed Cross process Resource counting Supported platforms
Critical Section Fast No No (exclusive access) 9x/NT/CE
Mutex Slow Yes No (exclusive access) 9x/NT/CE
Semaphore Slow Yes Automatic 9x/NT
Event Slow Yes Yes 9x/NT/CE
Metered Section Fast Yes Automatic 9x/NT/CE

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)

相关文章
|
2月前
|
XML C# 数据格式
掌握了在Windows平台上查看DLL依赖的方法
掌握了在Windows平台上查看DLL依赖的方法
208 4
|
7月前
|
Ubuntu 关系型数据库 MySQL
使用Ubuntu和Windows电脑实现Mysql主从同步(详细操作步骤)
使用Ubuntu和Windows电脑实现Mysql主从同步(详细操作步骤)
104 2
|
7月前
|
安全 Windows
windows11 永久关闭windows defender的方法
windows11 永久关闭windows defender的方法
856 2
|
2月前
|
监控 Ubuntu Linux
视频监控笔记(五):Ubuntu和windows时区同步问题-your clock is behind
这篇文章介绍了如何在Ubuntu和Windows系统中通过设置相同的时区并使用ntp服务来解决时间同步问题。
68 4
视频监控笔记(五):Ubuntu和windows时区同步问题-your clock is behind
|
2月前
|
人工智能 JavaScript 网络安全
ToB项目身份认证AD集成(三完):利用ldap.js实现与windows AD对接实现用户搜索、认证、密码修改等功能 - 以及针对中文转义问题的补丁方法
本文详细介绍了如何使用 `ldapjs` 库在 Node.js 中实现与 Windows AD 的交互,包括用户搜索、身份验证、密码修改和重置等功能。通过创建 `LdapService` 类,提供了与 AD 服务器通信的完整解决方案,同时解决了中文字段在 LDAP 操作中被转义的问题。
|
2月前
|
弹性计算 数据安全/隐私保护 Windows
阿里云国际版无法远程连接Windows服务器的排查方法
阿里云国际版无法远程连接Windows服务器的排查方法
|
3月前
|
存储 开发者 Windows
WINDOWS 环境变量设置方法
本文旨在帮助使用Windows电脑的开发者们为其设备配置环境变量,以更好地支持大模型应用的开发工作。文中详细介绍了三种配置方法:一是将环境变量设置为系统级变量;二是在命令行界面通过`SET`命令或`PowerShell`临时设置变量;三是借鉴MAC的方式,创建全局环境变量文件`.zshrc`进行配置。这些方法简单实用,便于根据实际需求选择适合的方式进行配置。
|
2月前
|
安全 Windows
Windows系统实现exe服务注册的方法都有哪些?
【10月更文挑战第5天】Windows系统实现exe服务注册的方法都有哪些?
313 0
|
2月前
|
数据可视化 程序员 C#
C#中windows应用窗体程序的输入输出方法实例
C#中windows应用窗体程序的输入输出方法实例
46 0
|
2月前
|
网络协议 安全 调度
关闭Windows自动更新的6种方法
本文介绍了六种关闭Windows自动更新的方法,包括使用服务管理器、组策略编辑器、修改注册表、任务计划程序、网络连接设置和命令行。
1236 0
下一篇
无影云桌面