.NET简谈组件程序设计之(渗入序列化过程)

简介: 在本人的上一篇文章“.NET简谈组件程序设计之(初识序列化、持久化) ”中,我们基本上了解了什么叫序列化和持久化。通过系统为我们提供的服务,我们可以很方便的进行二进制序列化、SOAP协议序列化。 今天这篇文章是来讲解怎么运用一些高级的功能,在序列化、反序列化过程中进行一些控制。

在本人的上一篇文章“.NET简谈组件程序设计之(初识序列化、持久化) ”中,我们基本上了解了什么叫序列化和持久化。通过系统为我们提供的服务,我们可以很方便的进行二进制序列化、SOAP协议序列化。

今天这篇文章是来讲解怎么运用一些高级的功能,在序列化、反序列化过程中进行一些控制。[王清培版权所有,转载请给出署名]

这里穿插一句题外话:其实在我们自己编写组件的时候真的有好多东西可以借鉴.NET平台的一些优点,它的功能都不是死的,可以订阅、可以切入,在我们编写组件的时候,我们其实也要好好考虑一些高级的特性。

上面这段话其实是为了铺垫用的,意思是说序列化组件在它工作的时候我们可以“参合”进去。

IFormatter格式器接口在工作的时候会去检查要序列化的对象是否用Serializable特性进行了标记,如果有,那么就进行深度递归遍历或者广度递归遍历所有成员,如果内部成员被NonSerialized禁止序列化特性标记,那么IFormatter将跳过该成员。在对象的内部所有的成员如果没有被禁止序列化,那么都会经过序列化工程,所以我们很难保证在特殊的对象上能否递归遍历序列化成功。

很典型的对象就是event事件对象,在订阅列表中我们不能保证所有的订阅者都能够被序列化,但是我们又想在反序列化的时候能初始化一些数据。

IDeserializationCallback接口

using System;
using System.Runtime.InteropServices;

namespace System.Runtime.Serialization
{
    // 摘要:
    //     指示在完成整个对象图形的反序列化时通知类。
    [ComVisible(true)]
    public interface IDeserializationCallback
    {
        // 摘要:
        //     在整个对象图形已经反序列化时运行。
        //
        // 参数:
        //   sender:
        //     开始回调的对象。当前未实现该参数的功能。
        void OnDeserialization(object sender);
    }
}

 

IDeserializationCallback接口是反序列化时会执行的接口,接口里面只有一个OnDeserialization方法,系统在反序列化的时候会检查待序列化对象是否实现了IDeserializationCallback接口,如果实现了,那么系统就调用该接口中的OnDeserialization方法。

[王清培版权所有,转载请给出署名]

那么这个方法我们有何用呢,我们来看代码;

using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.Serialization;
namespace ConsoleApplication1.序列化和持久化
{
    [Serializable]
    public class MyClass : IDeserializationCallback
    {
        public MyClass() { }
        public string number = "MyClass状态";
        [field: NonSerialized]//事件必须用field进行修饰   
        public event EventHandler Event;
        #region IDeserializationCallback 成员
        public void OnDeserialization(object sender)
        {
        }
        #endregion)
    }
}

 

MyClass类中有一个Event事件对象,我们在它上面加了禁止序列化特性,前面的field是用来把event对象也当成字段来看待,因为NonSerialized特性只能用在field字段上。

我们实现IDeserializationCallback接口,这个接口的方法会再每次反序列化的时候执行。

using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using System.Runtime.Serialization.Formatters.Soap;
using System.Runtime.Serialization.Formatters;
using System.IO;

namespace ConsoleApplication1.序列化和持久化
{
    public static class Program
    {
        public static void Main()
        {
            
            SoapFormatter formatter = new SoapFormatter();
          
            Stream stream = new FileStream("obj.xml", FileMode.Create, FileAccess.Write);
            using (stream)
            {
                MyClass myclass = new MyClass();
                myclass.Event += new EventHandler(myclass_Event);
                formatter.Serialize(stream, myclass);
            }

            Stream stream1 = new FileStream("obj.xml", FileMode.Open, FileAccess.Read);
            using (stream1)
            {
                MyClass myclass = formatter.Deserialize(stream1) as MyClass;
            }
          
        }

        static void myclass_Event(object sender, EventArgs e)
        {

        }
    }
}

 

我们在MyClass类中订阅了Event事件,如果我没有在MyClass类中的Event事件上加上禁止序列化特性,那么执行序列化的时候肯定是回报错的。

如果我们需要再对象MyClass存在的时候就需要有一个事件订阅者存在,比如对象内部的日志记录、消息发送等。我们就可以在OnDeserialization方法中进行处理。

using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.Serialization;

namespace ConsoleApplication1.序列化和持久化
{
    [Serializable]
    public class MyClass : IDeserializationCallback, ISerializable
    {
        public MyClass() { }
        public string number = "MyClass状态";


        [field: NonSerialized]//事件必须用field进行修饰
        public event EventHandler Event;

   
        #region IDeserializationCallback 成员

        public void OnDeserialization(object sender)
        {

        }

        #endregion)

    }
}

 

序列化生命周期事件

在序列化和反序列化的过程中,系统会经历几个过程。大致分为下列四种,

序列化前(OnSerializing)、序列化后(OnSerialized)、反序列化前(OnDeserializing)、反序列化后(OnDeserialized),然后系统给我们留了入口,我们可以通过参与这几个方法来进行一些过程控制。请看代码;

        [OnSerializing]
        void OnSerializing(StreamingContext context)
        {

        }
        [OnSerialized]
        void OnSerialized(StreamingContext context)
        {

        }
        [OnDeserializing]
        void OnDeSerializing(StreamingContext context)
        {

        }
        [OnDeserialized]
        void OnDeserizlized(StreamingContext context)
        {

        }

 

这几个特性就是用来标记序列化组件的过程的,系统会在处理的时候分别调用这几个方法,我们可以在几个方法中进行过程控制。StreamingContext是序列化流的对象,我们可以获取到序列化流的目标。

ISerializable接口

using System;
using System.Runtime.InteropServices;

namespace System.Runtime.Serialization
{
    // 摘要:
    //     允许对象控制其自己的序列化和反序列化过程。
    [ComVisible(true)]
    public interface ISerializable
    {
        // 摘要:
        //     使用将目标对象序列化所需的数据填充 System.Runtime.Serialization.SerializationInfo。
        //
        // 参数:
        //   info:
        //     要填充数据的 System.Runtime.Serialization.SerializationInfo。
        //
        //   context:
        //     此序列化的目标(请参见 System.Runtime.Serialization.StreamingContext)。
        //
        // 异常:
        //   System.Security.SecurityException:
        //     调用方没有所要求的权限。
        void GetObjectData(SerializationInfo info, StreamingContext context);
    }
}

 

如果我们想更进一步的控制序列化和反序列化过程,那么我们就来实现ISerializable接口,通过这个接口我们基本上能控制序列化和反序列化的所有数据。

我们在MyClass类中加上这些代码。

 public void GetObjectData(SerializationInfo info, StreamingContext context)
        {
            info.AddValue("number", "手动添加的状态");
        }
        #endregion

        //反序列化构造函数
        protected MyClass(SerializationInfo info, StreamingContext context)
        {
            this.number = (string)info.GetValue("number", typeof(string));
        }

 

我们实现了ISerializable接口,里面只有一个方法GetObjectData,这个方法我想是系统要调用的,是用来获取序列化数据对的,我们通过Serializationinfo对象来进行设置。其实SerializationInfo是对StreamingContext对象的包装,主要的目的就是用来进行数据的设置的。StreamingContext是序列化流的引用,最后是要将这些数据写入Stream中的。

有一个至关重要的地方就是,在系统进行反序列化的时候不会调用Serializable特性标记的对象的默认构造函数,因为系统也不确定在构造函数是否能恢复对象的所有的数据,因为在序列化的时候可能过滤了部分NonSerializable标记对象。所以系统会调用自己规定的以个重载构造函数,就是我上面所写的:

protected MyClass(SerializationInfo info, StreamingContext context)

系统通过Serializationinfo和StreamingContext两个对象来恢复当初序列化到StreamContext中的数据。[王清培版权所有,转载请给出署名]

目录
相关文章
|
SQL C# 数据安全/隐私保护
一起谈.NET技术,由扩展方法引申出的编程思维
  1. Helper大爆炸   .NET Framework为我们提供了丰富的类库,但是这并不是万能地,在大部分的时间,我们都需要为我们的项目特殊定制我们的通用类库。   常常,我们都可以构造一个类,类里封装一些方法。
1049 0
|
XML C# 开发工具
一起谈.NET技术,从数据到代码—通过代码生成机制实现强类型编程[下篇]
  在《上篇》中,我们实现了将保存有消息条目的XML向CodeDOM的转换,即是将XML文件生成一个CodeCompileUnit对象,而该CodeCompileUnit对象反映出来的DOM层次和我们将会生成的代码文件向匹配。
1134 0
|
SQL C# 数据安全/隐私保护
由扩展方法引“.NET研究”申出的编程思维
  1. Helper大爆炸上海闵行企业网站设计与制作g>   .NET Framework为我们提供了丰富的类库,但是这并不是万能地,在大部分的时间,我们都需要为我们的项目特殊定制我们的通用类库。   常常,我们都可以构造一个类,类里封装一些方法。
1021 0
|
XML C# 数据格式
一起谈.NET技术,从数据到代码—通过代码生成机制实现强类型编程[上篇]
  我不知道大家对CodeDOM的代码生成机制是否熟悉,但是有一点可以确定:如果你使用过Visual Studio,你就应该体验过它带给我们在编程上的便利。随便列举三种典型的代码生成的场景:在创建强类型DataSet的时候,VS会自动根据Schema生成相应的C#或者VB.NET代码;当我们编辑Resource文件的时候,相应的的后台代码也会自动生成;当我们通过添加Web Reference调用Web Service或者WCF Service的时候,VS会自动生成服务代理的代码和相应的配置。
963 0
|
Java 关系型数据库 程序员
分清“语言/规范”以及“平台/实现”,以及跨平台.NET开发“.NET研究”
  在许多年前,&ld上海徐汇企业网站制作quo;语言”就等同于“平台”,例如C,C++以及最早的Ruby和Python等等。但是随着技术发展,出现了一些通用的平台,例如.NET和Java,逐渐这些平台上的语言也越来越多。
1552 0
|
Java .NET
一起谈.NET技术,关于CLR内存管理一些深层次的讨论 [下篇]
  《上篇》中我们主要讨论的是程序集(Assembly)和应用程序域(AppDomain)的话题,着重介绍了两个不同的程序集加载方式——独占方式和共享方式(中立域方式);以及基于进程范围内的字符串驻留。
1065 0
|
.NET C#
一起谈.NET技术,C#中的语言特性都是从何而来?
  前几天推荐一个同事用“可选参数”,推荐完了我还画蛇添足的说这是.Net 4中的新特性。但是事后才发现这个新特性是C# 4.0的语言特性,与.Net 4无关。其实也不只这一次,我平时也经常把语言、框架、运行时,有时甚至还有开发工具混为一谈。
967 0