Azure 云平台用 SQOOP 将 SQL server 2012 数据表导入 HIVE / HBASE

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介: My name is Farooq and I am with HDinsight support team here at Microsoft. In this blog I will try to give some brief overview of Sqoop in HDinsight an...

My name is Farooq and I am with HDinsight support team here at Microsoft. In this blog I will try to give some brief overview of Sqoop in HDinsight and then use an example of importing data from a Windows Azure SQL Database table to HDInsight cluster to demonstrate how you can get stated with Sqoop in HDInsight.

What is Sqoop?

Sqoop is an Apache project and part of Hadoop ecosystem. It allows data transfer between Hadoop\HDInsight cluster and relational databases such as SQL, Oracle, MySQL etc. Sqoop is a collection of related tools, for example import, export, list-all-tables, list-databases etc. To use Sqoop, you specify the tool you want to use and the arguments that control the tool. For more information on Sqoop please check Sqoop User Guide.

When do you need to use Sqoop?

You need to use Sqoop only when you are trying to import/export data between Hadoop and a relational Database. HDInsight provides a full-featured Hadoop Distributed File System (HDFS) over Windows Azure Blob storage (WABS) and if you want to upload data to HDInsight or WASB from any other source, for example from your local computer's file system then you should use any of the tools discussed in this article. The same article also discusses how to import data to HDFS from SQL Database/SQL Server using Sqoop. In this blog I will elaborate on the same with an example and try to provide more details information along the way.

 

What do I need to do for Sqoop to work in my HDInsight cluster?

HDInsight 2.1 includes Sqoop 1.4.3. The Microsoft SQL Server SQOOP Connector for Hadoop is now part of Apache SQOOP 1.4. So you do not need to install the connector separately. All HDInsight clusters also have Microsoft SQL Server JDBC driver installed; so all components that are needed to transfer data between HDInsight cluster and SQL server are already installed in a HDI cluster and you do not have to install anything.

How can I run a Sqoop job?

With HDInsight preview version we could only run the Sqoop commands from Hadoop command line after doing a remote desktop session (RDP) on the HDInsight cluster head node. However the release version of HDInsight SDK includes the PowerShell cmdlet to run Sqoop job remotely. So we can

  1. Run Sqoop jobs locally from HDInsight head node using Hadoop Command Line
  2. Run Sqoop job remotely using HDInsight SDK PowerShell cmlets

 

We recommend that you run your Sqoop commands remotely using HDInsight SDK cmdlets . We will discuss both the options in detail. First let's see how we can run Sqoop jobs locally from HDInsight head node using Hadoop Command Line.

 

Run Sqoop jobs locally from HDInsight head node using Hadoop Command Line

I am assuming you already have a Windows Azure SQL Database. If you don't and you want to get one please follow the steps in this article. Let's follow the steps below to create a test table and populate with some sample data in your Windows Azure SQL Database which we will import in our HDInsight cluster shortly. I will show how to do this from Windows Azure portal but you can also connect to the Windows Azure SQL Database from SSMS and do the same.

Note: if you want to transfer data from a SQL server on your environment instead then you need to change the Sqoop command with appropriate connection information and it should be very similar to the connection string I have provided later in this blog under 'More sample Sqoop commands' section for SQL server on Window Azure VM.

  1. Login to your Windows Azure Portal and select 'SQL Databases' from the Left and click 'Manage' at the bottom.

  2. Provider your Windows Azure SQL Database user ID and password to login and then click 'New Query' to open a new query window to run T-SQL queries.

  3. Copy paste the following T-SQL query and execute to create a test table Table1.

    CREATE TABLE [dbo].[Table1](

        [ID] [int] NOT NULL,

        [FName] [nvarchar](50) NOT NULL,

        [LName] [nvarchar](50) NOT NULL,

    CONSTRAINT [PK_Table_4] PRIMARY KEY CLUSTERED

    (

        [ID] ASC

    )

    ) ON [PRIMARY]

    GO

  4. Run the Following to Populate Table1 with 4 rows.

    INSERT INTO [dbo].[Table1] VALUES (1,'Jhon','Doe'), (2,'Harry','Hoe'), (3, 'Carla','Coe'), (4,'Jackie','Joe');

    GO

  5. Now finally run the following T-SQL to make sure that is table is populated with the sample data. You should see the output as below.

    SELECT * from [dbo].[Table1]

 

 

Now let's follow the steps below to Import the rows in Table1 to the HDInsight Cluster.

  1. Login to your HDInsight cluster head node via Remote Desktop (RDP) and double click the 'Hadoop Command Line' icon in the desktop to open Hadoop Command Line. RDP access is turned off by default but you can follow the steps inthis blog to enable RDP and then RDP to the head node of your HDInsight cluster.
  2. In Hadoop Command Line please navigate to the "C:\apps\dist\sqoop-1.4.3.1.3.1.0-06\bin" folder.

    Note: Please verify the path for the Sqoop bin folder in your environment. It may slightly vary from version to version.

  3. Run the following Sqoop command to import all the rows of table "Table1" from  Windows Azure SQL Database "mfarooqSQLDB" to HDInsight Cluster.

    sqoop.cmd import –-connect "jdbc:sqlserver://<SQLDatabaseServerName>.database.windows.net:1433;username=<SQLDatabasUsername>@<SQLDatabaseServerName>;password=<SQLDatabasePassword>;database=<SQLDatabaseDatabaseName>" --table Table1 --target-dir /user/hdp/SqoopImportTable1

    Once the command is executed successfully you should see something similar as below in Hadoop Command Line window.

  4. There are quite a number of tools available to upload/download and view data in WASB. Let's use Azure Storage Explorer tool. You need to install the tool in your work station and configure for your cluster. Once all is done open the tool and find out /user/hdp/SqoopImportTable1 folder. You should see something similar as below. It shows 4 files indicating 4 map jobs were used. You can select a file and click the 'View' button to see the actual text data.

Now let's export the same rows back to the SQL server from HDInsight cluster. Please use a different table with the same schema as 'Table1'. Otherwise you would get a Primary Key violation error since the rows already exist in 'Table1'.

  1. Create an empty table 'Table2' with the same schema as 'Table1'.

    CREATE TABLE [dbo].[Table2](

        [ID] [int] NOT NULL,

        [FName] [nvarchar](50) NOT NULL,

        [LName] [nvarchar](50) NOT NULL,

    CONSTRAINT [PK_Table_2] PRIMARY KEY CLUSTERED

    (

        [ID] ASC

    )

    ) ON [PRIMARY]

    GO

  2. Run the following Sqoop command from Hadoop Command Line.

sqoop.cmd export --connect "jdbc:sqlserver://<SQLDatabaseServerName>.database.windows.net:1433;username=<SQLDatabasUsername>@<SQLDatabaseServerName>;password=<SQLDatabasePassword>;database=<SQLDatabaseDatabaseName>" --table Table2 --export-dir /user/hdp/SqoopImportTable1 --input-fields-terminated-by ","

More sample Sqoop commands:

Import from a SQL server on Window Azure VM:

sqoop.cmd import --connect "jdbc:sqlserver:// <WindowsAzureVMServerName>.cloudapp.net:1433; username=<SQLServerUserName>; password=<SQLServerPassword>; database=<SQLServerDatabaseName>" --table Table_1 --target-dir /user/hdp/SqoopImportTable

Export to a SQL server on Window Azure VM:

sqoop.cmd export --connect "jdbc:sqlserver://<WindowsAzureVMServerName>.cloudapp.net:1433; username=<SQLServerUserName>; password=<SQLServerPassword>; database=<SQLServerDatabaseName>" --table Table_2 --export-dir /user/hdp/SqoopImportTable2 --input-fields-terminated-by ","

Importing to HIVE from Windows Azure SQL Database:

C:\apps\dist\sqoop-1.4.2\bin>sqoop.cmd import –connect "jdbc:sqlserver://<WindowsAzureVMServerName>.cloudapp.net:1433; username=<SQLServerUserName>; password=<SQLServerPassword>; database=<SQLServerDatabaseName>" --table Table1 --hive-import

Note: This will store the files under hive/warehouse/TableName folder in HDFS (For example hive/warehouse/table1/part-m-00000 )

Run Sqoop job remotely using HDInsight SDK PowerShell cmlets

To use HDInsight PowerShell tools you need to install Windows Azure PowerShell tools first and then install HDInsight PowerShell tools. Then you need to prepare your workstation to use the HDInsight SDK. Please follow the detail steps in this earlier blog post to install the tools and prepare your work station to use the HDInsight SDK.

Once you have installed and configured Windows Azure PowerShell tools and HDInsight SDK running a Sqoop job is very easy. Please follow the steps below to import all the rows of table "Table2" from Windows Azure SQL Database "mfarooqSQLDB" to HDInsight Cluster.

  1. Open the Windows azure PowerShell console on the workstation and run the following cmdlets one at a time.

    Note: You can also use Windows Powershell ISE to type the code and run all at once. Powershell ISE makes edits easy and you can open the tool from "C:\Windows\System32\WindowsPowerShell\v1.0\powershell_ise.exe".

  2. Set the variables for your Windows Azure Subscription name and the HDInsight cluster name.

    $subscriptionName = "<WindowsAzureSubscriptionName>"

    $clusterName = "<HDInsightClusterName>"

    Select-AzureSubscription $subscriptionName

    Use-AzureHDInsightCluster $clusterName -Subscription $subscriptionName

  3. Define the Sqoop job that we want to run. In this exercise we will import all the rows of table "Table2" that we created earlier in Windows Azure SQL Database.

    $sqoop = New-AzureHDInsightSqoopJobDefinition -Command "import --connect jdbc:sqlserver://<SQLDatabaseServerName>.database.windows.net:1433;username=<SQLDatabasUsername>@<SQLDatabaseServerName>; password=<SQLDatabasePassword>; database=<SQLDatabaseDatabaseName> --table Table2 --target-dir /user/hdp/SqoopImportTable8"

  4. Run the Sqoop job that we just defined.

    $sqoopJob = Start-AzureHDInsightJob -Subscription $subscriptionName -Cluster $clusterName -JobDefinition $sqoop

  5. Run the following to wait for the completion or failure of the HDInsight job and show its progress.

    Wait-AzureHDInsightJob -Subscription $subscriptionName -WaitTimeoutInSeconds 3600 -Job $sqoopJob

  6. Run the following to retrieve the log output for a job from the storage account associated with a specified cluster.

    Get-AzureHDInsightJobOutput -Cluster $clusterName -Subscription $subscriptionName -StandardError -JobId $sqoopJob.JobId

If the Sqoop job completes successfully you should see something similar as below in your Windows Azure PowerShell command line window.

Troubleshooting tips

When you run a Sqoop job command it runs MapReduce job in Hadoop Cluster (map only and no reduce task). You can specify the number of map tasks but by default four tasks are used. There is no separate log file specific to Sqoop. So we need to troubleshoot Sqoop job failure or performance issues as any other MapReduce job failure or performance issues and start by checking the task logs.  I plan to write more on how to troubleshot Sqoop issues by focusing on some specific scenarios in the near future.

That's all for today and I hope you found this blog useful. I look forward to your comments and suggestions J.

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
53 3
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
86 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
38 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
48 0
|
6月前
|
SQL 关系型数据库 MySQL
Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
【2月更文挑战第9天】Sqoop【付诸实践 01】Sqoop1最新版 MySQL与HDFS\Hive\HBase 核心导入导出案例分享+多个WRAN及Exception问题处理(一篇即可学会在日常工作中使用Sqoop)
265 7
|
3月前
|
SQL JavaScript 前端开发
【Azure 应用服务】Azure JS Function 异步方法中执行SQL查询后,Callback函数中日志无法输出问题
【Azure 应用服务】Azure JS Function 异步方法中执行SQL查询后,Callback函数中日志无法输出问题
|
3月前
|
SQL Java 数据库连接
【Azure 应用服务】Java ODBC代码中,启用 Managed Identity 登录 SQL Server 报错 Managed Identity authentication is not available
【Azure 应用服务】Java ODBC代码中,启用 Managed Identity 登录 SQL Server 报错 Managed Identity authentication is not available
|
3月前
|
SQL Java 数据库连接
【Azure Spring Cloud】Azure Spring Cloud connect to SQL using MSI
【Azure Spring Cloud】Azure Spring Cloud connect to SQL using MSI
|
3月前
|
网络协议 NoSQL 网络安全
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
|
3月前
|
SQL 存储 JSON
【Azure 存储服务】Blob中数据通过Stream Analytics导出到SQL/Cosmos DB
【Azure 存储服务】Blob中数据通过Stream Analytics导出到SQL/Cosmos DB
下一篇
无影云桌面