Java 集合系列14之 Map总结(HashMap, Hashtable, TreeMap, WeakHashMap等使用场景)

简介: 概要 学完了Map的全部内容,我们再回头开开Map的框架图。   本章内容包括:第1部分 Map概括第2部分 HashMap和Hashtable异同第3部分 HashMap和WeakHashMap异同 转载请注明出处:http://www.cnblogs.com/skywang12345/admin/EditPosts.aspx?postid=3311126   第1部分 Map概括 (01) Map 是“键值对”映射的抽象接口。

概要

学完了Map的全部内容,我们再回头开开Map的框架图。

 

本章内容包括:
第1部分 Map概括
第2部分 HashMap和Hashtable异同
第3部分 HashMap和WeakHashMap异同

转载请注明出处:http://www.cnblogs.com/skywang12345/admin/EditPosts.aspx?postid=3311126

 

第1部分 Map概括

(01) Map 是“键值对”映射的抽象接口。
(02) AbstractMap 实现了Map中的绝大部分函数接口。它减少了“Map的实现类”的重复编码。
(03) SortedMap 有序的“键值对”映射接口。
(04) NavigableMap 是继承于SortedMap的,支持导航函数的接口。
(05) HashMap, Hashtable, TreeMap, WeakHashMap这4个类是“键值对”映射的实现类。它们各有区别!

  HashMap 是基于“拉链法”实现的散列表。一般用于单线程程序中。
  Hashtable 也是基于“拉链法”实现的散列表。它一般用于多线程程序中。
  WeakHashMap 也是基于“拉链法”实现的散列表,它一般也用于单线程程序中。相比HashMap,WeakHashMap中的键是“弱键”,当“弱键”被GC回收时,它对应的键值对也会被从WeakHashMap中删除;而HashMap中的键是强键。
  TreeMap 是有序的散列表,它是通过红黑树实现的。它一般用于单线程中存储有序的映射。

 

第2部分 HashMap和Hashtable异同

第2.1部分 HashMap和Hashtable的相同点

HashMapHashtable都是存储“键值对(key-value)”的散列表,而且都是采用拉链法实现的。
存储的思想都是:通过table数组存储,数组的每一个元素都是一个Entry;而一个Entry就是一个单向链表Entry链表中的每一个节点就保存了key-value键值对数据

添加key-value键值对:首先,根据key值计算出哈希值,再计算出数组索引(即,该key-value在table中的索引)。然后,根据数组索引找到Entry(即,单向链表),再遍历单向链表,将key和链表中的每一个节点的key进行对比。若key已经存在Entry链表中,则用该value值取代旧的value值;若key不存在Entry链表中,则新建一个key-value节点,并将该节点插入Entry链表的表头位置。
删除key-value键值对:删除键值对,相比于“添加键值对”来说,简单很多。首先,还是根据key计算出哈希值,再计算出数组索引(即,该key-value在table中的索引)。然后,根据索引找出Entry(即,单向链表)。若节点key-value存在与链表Entry中,则删除链表中的节点即可。


上面介绍了HashMap和Hashtable的相同点。正是由于它们都是散列表,我们关注更多的是“它们的区别,以及它们分别适合在什么情况下使用”。那接下来,我们先看看它们的区别。

 

第2.2部分 HashMap和Hashtable的不同点

1 继承和实现方式不同

HashMap 继承于AbstractMap,实现了Map、Cloneable、java.io.Serializable接口。
Hashtable 继承于Dictionary,实现了Map、Cloneable、java.io.Serializable接口。

HashMap的定义:

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable { ... }

Hashtable的定义:

public class Hashtable<K,V>
    extends Dictionary<K,V>
    implements Map<K,V>, Cloneable, java.io.Serializable { ... }

从中,我们可以看出:
1.1 HashMap和Hashtable都实现了Map、Cloneable、java.io.Serializable接口。
      实现了Map接口,意味着它们都支持key-value键值对操作。支持“添加key-value键值对”、“获取key”、“获取value”、“获取map大小”、“清空map”等基本的key-value键值对操作。
      实现了Cloneable接口,意味着它能被克隆。
      实现了java.io.Serializable接口,意味着它们支持序列化,能通过序列化去传输。

1.2 HashMap继承于AbstractMap,而Hashtable继承于Dictionary
      Dictionary是一个抽象类,它直接继承于Object类,没有实现任何接口。Dictionary类是JDK 1.0的引入的。虽然Dictionary也支持“添加key-value键值对”、“获取value”、“获取大小”等基本操作,但它的API函数比 Map少;而且             Dictionary一般是通过Enumeration(枚举类)去遍历,Map则是通过Iterator(迭代器)去遍历。 然而‘由于Hashtable也实现了Map接口,所以,它即支持Enumeration遍历,也支持Iterator遍历。关于这点,后面还会进一步说 明。
      AbstractMap是一个抽象类,它实现了Map接口的绝大部分API函数;为Map的具体实现类提供了极大的便利。它是JDK 1.2新增的类。

 

2 线程安全不同

Hashtable的几乎所有函数都是同步的,即它是线程安全的,支持多线程。
而HashMap的函数则是非同步的,它不是线程安全的。 若要在多线程中使用HashMap,需要我们额外的进行同步处理。 对HashMap的同步处理可以使用Collections类提供的synchronizedMap静态方法,或者直接使用JDK 5.0之后提供的java.util.concurrent包里的ConcurrentHashMap类。


3 对null值的处理不同

HashMap的key、value都可以为null
Hashtable的key、value都不可以为null

我们先看看HashMap和Hashtable “添加key-value”的方法

HashMap的添加key-value的方法

复制代码
 1 // 将“key-value”添加到HashMap中
 2 public V put(K key, V value) {  3 // 若“key为null”,则将该键值对添加到table[0]中。  4 if (key == null)  5 return putForNullKey(value);  6 // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。  7 int hash = hash(key.hashCode());  8 int i = indexFor(hash, table.length);  9 for (Entry<K,V> e = table[i]; e != null; e = e.next) { 10  Object k; 11 // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出! 12 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { 13 V oldValue = e.value; 14 e.value = value; 15 e.recordAccess(this); 16 return oldValue; 17  } 18  } 19 20 // 若“该key”对应的键值对不存在,则将“key-value”添加到table中 21 modCount++; 22  addEntry(hash, key, value, i); 23 return null; 24 } 25 26 // putForNullKey()的作用是将“key为null”键值对添加到table[0]位置 27 private V putForNullKey(V value) { 28 for (Entry<K,V> e = table[0]; e != null; e = e.next) { 29 if (e.key == null) { 30 V oldValue = e.value; 31 e.value = value; 32 // recordAccess()函数什么也没有做 33 e.recordAccess(this); 34 return oldValue; 35  } 36  } 37 // 添加第1个“key为null”的元素都table中的时候,会执行到这里。 38 // 它的作用是将“设置table[0]的key为null,值为value”。 39 modCount++; 40 addEntry(0, null, value, 0); 41 return null; 42 }
复制代码

Hashtable的添加key-value的方法

复制代码
 1 // 将“key-value”添加到Hashtable中
 2 public synchronized V put(K key, V value) {  3 // Hashtable中不能插入value为null的元素!!!  4 if (value == null) {  5 throw new NullPointerException();  6  }  7  8 // 若“Hashtable中已存在键为key的键值对”,  9 // 则用“新的value”替换“旧的value” 10 Entry tab[] = table; 11 // Hashtable中不能插入key为null的元素!!! 12 // 否则,下面的语句会抛出异常! 13 int hash = key.hashCode(); 14 int index = (hash & 0x7FFFFFFF) % tab.length; 15 for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { 16 if ((e.hash == hash) && e.key.equals(key)) { 17 V old = e.value; 18 e.value = value; 19 return old; 20  } 21  } 22 23 // 若“Hashtable中不存在键为key的键值对”, 24 // (01) 将“修改统计数”+1 25 modCount++; 26 // (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子) 27 // 则调整Hashtable的大小 28 if (count >= threshold) { 29 // Rehash the table if the threshold is exceeded 30  rehash(); 31 32 tab = table; 33 index = (hash & 0x7FFFFFFF) % tab.length; 34  } 35 36 // (03) 将“Hashtable中index”位置的Entry(链表)保存到e中 Entry<K,V> e = tab[index]; 37 // (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。 38 tab[index] = new Entry<K,V>(hash, key, value, e); 39 // (05) 将“Hashtable的实际容量”+1 40 count++; 41 return null; 42 }
复制代码

根据上面的代码,我们可以看出:

Hashtable的key或value,都不能为null!否则,会抛出异常NullPointerException。
HashMap的key、value都可以为null。 当HashMap的key为null时,HashMap会将其固定的插入table[0]位置(即HashMap散列表的第一个位置);而且 table[0]处只会容纳一个key为null的值,当有多个key为null的值插入的时候,table[0]会保留最后插入的value。

 

4 支持的遍历种类不同

HashMap只支持Iterator(迭代器)遍历。
而Hashtable支持Iterator(迭代器)和Enumeration(枚举器)两种方式遍历。

Enumeration 是JDK 1.0添加的接口,只有hasMoreElements(), nextElement() 两个API接口,不能通过Enumeration()对元素进行修改 。
而Iterator 是JDK 1.2才添加的接口,支持hasNext(), next(), remove() 三个API接口。HashMap也是JDK 1.2版本才添加的,所以用Iterator取代Enumeration,HashMap只支持Iterator遍历。

 

5 通过Iterator迭代器遍历时,遍历的顺序不同

HashMap是“从前向后”的遍历数组;再对数组具体某一项对应的链表,从表头开始进行遍历。
Hashtabl是“从后往前”的遍历数组;再对数组具体某一项对应的链表,从表头开始进行遍历。

HashMap和Hashtable都实现Map接口,所以支持获取它们“key的集合”、“value的集合”、“key-value的集合”,然后通过Iterator对这些集合进行遍历。
由于“key的集合”、“value的集合”、“key-value的集合”的遍历原理都是一样的;下面,我以遍历“key-value的集合”来进行说明。

HashMap 和Hashtable 遍历"key-value集合"的方式是:(01) 通过entrySet()获取“Map.Entry集合”。 (02) 通过iterator()获取“Map.Entry集合”的迭代器,再进行遍历。

HashMap的实现方式:先“从前向后”的遍历数组;对数组具体某一项对应的链表,则从表头开始往后遍历。

复制代码
 1 // 返回“HashMap的Entry集合”
 2 public Set<Map.Entry<K,V>> entrySet() {  3 return entrySet0();  4 }  5 // 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象  6 private Set<Map.Entry<K,V>> entrySet0() {  7 Set<Map.Entry<K,V>> es = entrySet;  8 return es != null ? es : (entrySet = new EntrySet());  9 } 10 // EntrySet对应的集合 11 // EntrySet继承于AbstractSet,说明该集合中没有重复的EntrySet。 12 private final class EntrySet extends AbstractSet<Map.Entry<K,V>> { 13  ... 14 public Iterator<Map.Entry<K,V>> iterator() { 15 return newEntryIterator(); 16  } 17  ... 18 } 19 // 返回一个“entry迭代器” 20 Iterator<Map.Entry<K,V>> newEntryIterator() { 21 return new EntryIterator(); 22 } 23 // Entry的迭代器 24 private final class EntryIterator extends HashIterator<Map.Entry<K,V>> { 25 public Map.Entry<K,V> next() { 26 return nextEntry(); 27  } 28 } 29 private abstract class HashIterator<E> implements Iterator<E> { 30 // 下一个元素 31 Entry<K,V> next; 32 // expectedModCount用于实现fail-fast机制。 33 int expectedModCount; 34 // 当前索引 35 int index; 36 // 当前元素 37 Entry<K,V> current; 38 39  HashIterator() { 40 expectedModCount = modCount; 41 if (size > 0) { // advance to first entry 42 Entry[] t = table; 43 // 将next指向table中第一个不为null的元素。 44 // 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环。 45 while (index < t.length && (next = t[index++]) == null) 46  ; 47  } 48  } 49 50 public final boolean hasNext() { 51 return next != null; 52  } 53 54 // 获取下一个元素 55 final Entry<K,V> nextEntry() { 56 if (modCount != expectedModCount) 57 throw new ConcurrentModificationException(); 58 Entry<K,V> e = next; 59 if (e == null) 60 throw new NoSuchElementException(); 61 62 // 注意!!! 63 // 一个Entry就是一个单向链表 64 // 若该Entry的下一个节点不为空,就将next指向下一个节点; 65 // 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。 66 if ((next = e.next) == null) { 67 Entry[] t = table; 68 while (index < t.length && (next = t[index++]) == null) 69 ; 70 } 71 current = e; 72 return e; 73 } 74 75 ... 76 }
复制代码

Hashtable的实现方式:先从“后向往前”的遍历数组;对数组具体某一项对应的链表,则从表头开始往后遍历。

复制代码
 1 public Set<Map.Entry<K,V>> entrySet() {
 2     if (entrySet==null)  3 entrySet = Collections.synchronizedSet(new EntrySet(), this);  4 return entrySet;  5 }  6  7 private class EntrySet extends AbstractSet<Map.Entry<K,V>> {  8 public Iterator<Map.Entry<K,V>> iterator() {  9 return getIterator(ENTRIES); 10  } 11  ... 12 } 13 14 private class Enumerator<T> implements Enumeration<T>, Iterator<T> { 15 // 指向Hashtable的table 16 Entry[] table = Hashtable.this.table; 17 // Hashtable的总的大小 18 int index = table.length; 19 Entry<K,V> entry = null; 20 Entry<K,V> lastReturned = null; 21 int type; 22 23 // Enumerator是 “迭代器(Iterator)” 还是 “枚举类(Enumeration)”的标志 24 // iterator为true,表示它是迭代器;否则,是枚举类。 25 boolean iterator; 26 27 // 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。 28 protected int expectedModCount = modCount; 29 30 Enumerator(int type, boolean iterator) { 31 this.type = type; 32 this.iterator = iterator; 33  } 34 35 // 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。 36 public boolean hasMoreElements() { 37 Entry<K,V> e = entry; 38 int i = index; 39 Entry[] t = table; 40 /* Use locals for faster loop iteration */ 41 while (e == null && i > 0) { 42 e = t[--i]; 43  } 44 entry = e; 45 index = i; 46 return e != null; 47  } 48 49 // 获取下一个元素 50 // 注意:从hasMoreElements() 和nextElement() 可以看出“Hashtable的elements()遍历方式” 51 // 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。 52 // 然后,依次向后遍历单向链表Entry。 53 public T nextElement() { 54 Entry<K,V> et = entry; 55 int i = index; 56 Entry[] t = table; 57 /* Use locals for faster loop iteration */ 58 while (et == null && i > 0) { 59 et = t[--i]; 60  } 61 entry = et; 62 index = i; 63 if (et != null) { 64 Entry<K,V> e = lastReturned = entry; 65 entry = e.next; 66 return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e); 67  } 68 throw new NoSuchElementException("Hashtable Enumerator"); 69  } 70 71 // 迭代器Iterator的判断是否存在下一个元素 72 // 实际上,它是调用的hasMoreElements() 73 public boolean hasNext() { 74 return hasMoreElements(); 75 } 76 77 // 迭代器获取下一个元素 78 // 实际上,它是调用的nextElement() 79 public T next() { 80 if (modCount != expectedModCount) 81 throw new ConcurrentModificationException(); 82 return nextElement(); 83 } 84 85 ... 86 87 }
复制代码

 

6 容量的初始值 和 增加方式都不一样

HashMap默认的容量大小是16;增加容量时,每次将容量变为“原始容量x2”
Hashtable默认的容量大小是11;增加容量时,每次将容量变为“原始容量x2 + 1”。

HashMap默认的“加载因子”是0.75, 默认的容量大小是16。

复制代码
 1 // 默认的初始容量是16,必须是2的幂。
 2 static final int DEFAULT_INITIAL_CAPACITY = 16;  3  4 // 默认加载因子  5 static final float DEFAULT_LOAD_FACTOR = 0.75f;  6  7 // 指定“容量大小”的构造函数  8 public HashMap(int initialCapacity) {  9 this(initialCapacity, DEFAULT_LOAD_FACTOR); 10 }
复制代码

当HashMap的 “实际容量” >= “阈值”时,(阈值 = 总的容量 * 加载因子),就将HashMap的容量翻倍。

复制代码
 1 // 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
 2 void addEntry(int hash, K key, V value, int bucketIndex) {  3 // 保存“bucketIndex”位置的值到“e”中  4 Entry<K,V> e = table[bucketIndex];  5 // 设置“bucketIndex”位置的元素为“新Entry”,  6 // 设置“e”为“新Entry的下一个节点”  7 table[bucketIndex] = new Entry<K,V>(hash, key, value, e);  8 // 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小  9 if (size++ >= threshold) 10 resize(2 * table.length); 11 }
复制代码

Hashtable默认的“加载因子”是0.75, 默认的容量大小是11。 

1 // 默认构造函数。
2 public Hashtable() { 3 // 默认构造函数,指定的容量大小是11;加载因子是0.75 4 this(11, 0.75f); 5 }

当Hashtable的 “实际容量” >= “阈值”时,(阈值 = 总的容量 x 加载因子),就将变为“原始容量x2 + 1”。

复制代码
 1 // 调整Hashtable的长度,将长度变成原来的(2倍+1)
 2 // (01) 将“旧的Entry数组”赋值给一个临时变量。  3 // (02) 创建一个“新的Entry数组”,并赋值给“旧的Entry数组”  4 // (03) 将“Hashtable”中的全部元素依次添加到“新的Entry数组”中  5 protected void rehash() {  6 int oldCapacity = table.length;  7 Entry[] oldMap = table;  8  9 int newCapacity = oldCapacity * 2 + 1; 10 Entry[] newMap = new Entry[newCapacity]; 11 12 modCount++; 13 threshold = (int)(newCapacity * loadFactor); 14 table = newMap; 15 16 for (int i = oldCapacity ; i-- > 0 ;) { 17 for (Entry<K,V> old = oldMap[i] ; old != null ; ) { 18 Entry<K,V> e = old; 19 old = old.next; 20 21 int index = (e.hash & 0x7FFFFFFF) % newCapacity; 22 e.next = newMap[index]; 23 newMap[index] = e; 24  } 25  } 26 }
复制代码

 

7 添加key-value时的hash值算法不同

HashMap添加元素时,是使用自定义的哈希算法。
Hashtable没有自定义哈希算法,而直接采用的key的hashCode()。

HashMap添加元素时,是使用自定义的哈希算法。

复制代码
 1 static int hash(int h) {
 2 h ^= (h >>> 20) ^ (h >>> 12);  3 return h ^ (h >>> 7) ^ (h >>> 4);  4 }  5  6 // 将“key-value”添加到HashMap中  7 public V put(K key, V value) {  8 // 若“key为null”,则将该键值对添加到table[0]中。  9 if (key == null) 10 return putForNullKey(value); 11 // 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。 12 int hash = hash(key.hashCode()); 13 int i = indexFor(hash, table.length); 14 for (Entry<K,V> e = table[i]; e != null; e = e.next) { 15  Object k; 16 // 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出! 17 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { 18 V oldValue = e.value; 19 e.value = value; 20 e.recordAccess(this); 21 return oldValue; 22  } 23  } 24 25 // 若“该key”对应的键值对不存在,则将“key-value”添加到table中 26 modCount++; 27  addEntry(hash, key, value, i); 28 return null; 29 }
复制代码
 

Hashtable没有自定义哈希算法,而直接采用的key的hashCode()。

复制代码
 1 public synchronized V put(K key, V value) {
 2     // Hashtable中不能插入value为null的元素!!!  3 if (value == null) {  4 throw new NullPointerException();  5  }  6  7 // 若“Hashtable中已存在键为key的键值对”,  8 // 则用“新的value”替换“旧的value”  9 Entry tab[] = table; 10 int hash = key.hashCode(); 11 int index = (hash & 0x7FFFFFFF) % tab.length; 12 for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) { 13 if ((e.hash == hash) && e.key.equals(key)) { 14 V old = e.value; 15 e.value = value; 16 return old; 17  } 18  } 19 20 // 若“Hashtable中不存在键为key的键值对”, 21 // (01) 将“修改统计数”+1 22 modCount++; 23 // (02) 若“Hashtable实际容量” > “阈值”(阈值=总的容量 * 加载因子) 24 // 则调整Hashtable的大小 25 if (count >= threshold) { 26 // Rehash the table if the threshold is exceeded 27  rehash(); 28 29 tab = table; 30 index = (hash & 0x7FFFFFFF) % tab.length; 31  } 32 33 // (03) 将“Hashtable中index”位置的Entry(链表)保存到e中 34 Entry<K,V> e = tab[index]; 35 // (04) 创建“新的Entry节点”,并将“新的Entry”插入“Hashtable的index位置”,并设置e为“新的Entry”的下一个元素(即“新Entry”为链表表头)。 36 tab[index] = new Entry<K,V>(hash, key, value, e); 37 // (05) 将“Hashtable的实际容量”+1 38 count++; 39 return null; 40 }
复制代码

 

8 部分API不同

Hashtable支持contains(Object value)方法,而且重写了toString()方法
而HashMap不支持contains(Object value)方法,没有重写toString()方法。


最后,再说说“HashMap和Hashtable”使用的情景。
其 实,若了解它们之间的不同之处后,可以很容易的区分根据情况进行取舍。例如:(01) 若在单线程中,我们往往会选择HashMap;而在多线程中,则会选择Hashtable。(02),若不能插入null元素,则选择 Hashtable;否则,可以选择HashMap。
但 这个不是绝对的标准。例如,在多线程中,我们可以自己对HashMap进行同步,也可以选择ConcurrentHashMap。当HashMap和 Hashtable都不能满足自己的需求时,还可以考虑新定义一个类,继承或重新实现散列表;当然,一般情况下是不需要的了。

 

第3部分 HashMap和WeakHashMap异同

3.1 HashMap和WeakHashMap的相同点

1 它们都是散列表,存储的是“键值对”映射。
2 它们都继承于AbstractMap,并且实现Map基础。
3 它们的构造函数都一样。
   它们都包括4个构造函数,而且函数的参数都一样。
4 默认的容量大小是16,默认的加载因子是0.75。
5 它们的“键”和“值”都允许为null。
6 它们都是“非同步的”。

 

3.2 HashMap和WeakHashMap的不同点

1 HashMap实现了Cloneable和Serializable接口,而WeakHashMap没有。
   HashMap实现Cloneable,意味着它能通过clone()克隆自己。
   HashMap实现Serializable,意味着它支持序列化,能通过序列化去传输。

2 HashMap的“键”是“强引用(StrongReference)”,而WeakHashMap的键是“弱引用(WeakReference)”。
   WeakReference的“弱键”能实现WeakReference对“键值对”的动态回收。当“弱键”不再被使用到时,GC会回收它,WeakReference也会将“弱键”对应的键值对删除。
   这个“弱键”实现的动态回收“键值对”的原理呢?其实,通过WeakReference(弱引用)和ReferenceQueue(引用队列)实现的。 首先,我们需要了解WeakHashMap中:
    第一,“键”是WeakReference,即key是弱键。
    第二,ReferenceQueue是一个引用队列,它是和WeakHashMap联合使用的。当弱引用所引用的对象被垃圾回收,Java虚拟机就会把这 个弱引用加入到与之关联的引用队列中。 WeakHashMap中的ReferenceQueue是queue。
   第三,WeakHashMap是通过数组实现的,我们假设这个数组是table。
 

接下来,说说“动态回收”的步骤。

(01) 新建WeakHashMap,将“键值对”添加到WeakHashMap中。
        将“键值对”添加到WeakHashMap中时,添加的键都是弱键。
        实际上,WeakHashMap是通过数组table保存Entry(键值对);每一个Entry实际上是一个单向链表,即Entry是键值对链表。
(02) 当某“弱键”不再被其它对象引用,并被GC回收时。在GC回收该“弱键”时,这个“弱键”也同时会被添加到queue队列中。
        例如,当我们在将“弱键”key添加到WeakHashMap之后;后来将key设为null。这时,便没有外部外部对象再引用该了key。
        接着,当Java虚拟机的GC回收内存时,会回收key的相关内存;同时,将key添加到queue队列中。
(03) 当下一次我们需要操作WeakHashMap时,会先同步table和queue。table中保存了全部的键值对,而queue中保存被GC回收的“弱键”;同步它们,就是删除table中被GC回收的“弱键”对应的键值对。
        例如,当我们“读取WeakHashMap中的元素或获取WeakReference的大小时”,它会先同步table和queue,目的是“删除 table中被GC回收的‘弱键’对应的键值对”。删除的方法就是逐个比较“table中元素的‘键’和queue中的‘键’”,若它们相当,则删除 “table中的该键值对”。

 

3.3 HashMap和WeakHashMap的比较测试程序

复制代码
  1 import java.util.HashMap;
  2 import java.util.Iterator;  3 import java.util.Map;  4 import java.util.WeakHashMap;  5 import java.util.Date;  6 import java.lang.ref.WeakReference;  7  8 /**  9  * @desc HashMap 和 WeakHashMap比较程序  10  *  11  * @author skywang  12  * @email kuiwu-wang@163.com  13 */  14 public class CompareHashmapAndWeakhashmap {  15  16 public static void main(String[] args) throws Exception {  17  18 // 当“弱键”是String时,比较HashMap和WeakHashMap  19  compareWithString();  20 // 当“弱键”是自定义类型时,比较HashMap和WeakHashMap  21  compareWithSelfClass();  22  }  23  24 /**  25  * 遍历map,并打印map的大小  26 */  27 private static void iteratorAndCountMap(Map map) {  28 // 遍历map  29 for (Iterator iter = map.entrySet().iterator();  30  iter.hasNext(); ) {  31 Map.Entry en = (Map.Entry)iter.next();  32 System.out.printf("map entry : %s - %s\n ",en.getKey(), en.getValue());  33  }  34  35 // 打印HashMap的实际大小  36 System.out.printf(" map size:%s\n\n", map.size());  37  }  38  39 /**  40  * 通过String对象测试HashMap和WeakHashMap  41 */  42 private static void compareWithString() {  43 // 新建4个String字符串  44 String w1 = new String("W1");  45 String w2 = new String("W2");  46 String h1 = new String("H1");  47 String h2 = new String("H2");  48  49 // 新建 WeakHashMap对象,并将w1,w2添加到 WeakHashMap中  50 Map wmap = new WeakHashMap();  51 wmap.put(w1, "w1");  52 wmap.put(w2, "w2");  53  54 // 新建 HashMap对象,并将h1,h2添加到 WeakHashMap中  55 Map hmap = new HashMap();  56 hmap.put(h1, "h1");  57 hmap.put(h2, "h2");  58  59 // 删除HashMap中的“h1”。  60 // 结果:删除“h1”之后,HashMap中只有 h2 !  61  hmap.remove(h1);  62  63 // 将WeakHashMap中的w1设置null,并执行gc()。系统会回收w1  64 // 结果:w1是“弱键”,被GC回收后,WeakHashMap中w1对应的键值对,也会被从WeakHashMap中删除。  65 // w2是“弱键”,但它不是null,不会被GC回收;也就不会被从WeakHashMap中删除。  66 // 因此,WeakHashMap中只有 w2  67 // 注意:若去掉“w1=null” 或者“System.gc()”,结果都会不一样!  68 w1 = null;  69  System.gc();  70  71 // 遍历并打印HashMap的大小  72 System.out.printf(" -- HashMap --\n");  73  iteratorAndCountMap(hmap);  74  75 // 遍历并打印WeakHashMap的大小  76 System.out.printf(" -- WeakHashMap --\n");  77  iteratorAndCountMap(wmap);  78  }  79  80 /**  81  * 通过自定义类测试HashMap和WeakHashMap  82 */  83 private static void compareWithSelfClass() { 84 // 新建4个自定义对象 85 Self s1 = new Self(10); 86 Self s2 = new Self(20); 87 Self s3 = new Self(30); 88 Self s4 = new Self(40); 89 90 // 新建 WeakHashMap对象,并将s1,s2添加到 WeakHashMap中 91 Map wmap = new WeakHashMap(); 92 wmap.put(s1, "s1"); 93 wmap.put(s2, "s2"); 94 95 // 新建 HashMap对象,并将s3,s4添加到 WeakHashMap中 96 Map hmap = new HashMap(); 97 hmap.put(s3, "s3"); 98 hmap.put(s4, "s4"); 99 100 // 删除HashMap中的s3。 101 // 结果:删除s3之后,HashMap中只有 s4 ! 102 hmap.remove(s3); 103 104 // 将WeakHashMap中的s1设置null,并执行gc()。系统会回收w1 105 // 结果:s1是“弱键”,被GC回收后,WeakHashMap中s1对应的键值对,也会被从WeakHashMap中删除。 106 // w2是“弱键”,但它不是null,不会被GC回收;也就不会被从WeakHashMap中删除。 107 // 因此,WeakHashMap中只有 s2 108 // 注意:若去掉“s1=null” 或者“System.gc()”,结果都会不一样! 109 s1 = null; 110 System.gc(); 111 112 /* 113 // 休眠500ms 114 try { 115 Thread.sleep(500); 116 } catch (InterruptedException e) { 117 e.printStackTrace(); 118 } 119 // */ 120 121 // 遍历并打印HashMap的大小 122 System.out.printf(" -- Self-def HashMap --\n"); 123 iteratorAndCountMap(hmap); 124 125 // 遍历并打印WeakHashMap的大小 126 System.out.printf(" -- Self-def WeakHashMap --\n"); 127 iteratorAndCountMap(wmap); 128 } 129 130 private static class Self { 131 int id; 132 133 public Self(int id) { 134 this.id = id; 135 } 136 137 // 覆盖finalize()方法 138 // 在GC回收时会被执行 139 protected void finalize() throws Throwable { 140 super.finalize(); 141 System.out.printf("GC Self: id=%d addr=0x%s)\n", id, this); 142 } 143 } 144 }
复制代码

运行结果:

复制代码
 -- HashMap --
map entry : H2 - h2
  map size:1

 -- WeakHashMap --
map entry : W2 - w2
  map size:1

 -- Self-def HashMap --
map entry : CompareHashmapAndWeakhashmap$Self@1ff9dc36 - s4 map size:1 -- Self-def WeakHashMap -- GC Self: id=10 addr=0xCompareHashmapAndWeakhashmap$Self@12276af2) map entry : CompareHashmapAndWeakhashmap$Self@59de3f2d - s2 map size:1
复制代码
相关文章
|
1月前
|
Java
Java之HashMap详解
本文介绍了Java中HashMap的源码实现(基于JDK 1.8)。HashMap是基于哈希表的Map接口实现,允许空值和空键,不同步且线程不安全。文章详细解析了HashMap的数据结构、主要方法(如初始化、put、get、resize等)的实现,以及树化和反树化的机制。此外,还对比了JDK 7和JDK 8中HashMap的主要差异,并提供了使用HashMap时的一些注意事项。
Java之HashMap详解
|
2月前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
64 5
|
2月前
|
存储 Java API
详细解析HashMap、TreeMap、LinkedHashMap等实现类,帮助您更好地理解和应用Java Map。
【10月更文挑战第19天】深入剖析Java Map:不仅是高效存储键值对的数据结构,更是展现设计艺术的典范。本文从基本概念、设计艺术和使用技巧三个方面,详细解析HashMap、TreeMap、LinkedHashMap等实现类,帮助您更好地理解和应用Java Map。
66 3
|
2月前
|
存储 缓存 安全
在Java的Map家族中,HashMap和TreeMap各具特色
【10月更文挑战第19天】在Java的Map家族中,HashMap和TreeMap各具特色。HashMap基于哈希表实现,提供O(1)时间复杂度的高效操作,适合性能要求高的场景;TreeMap基于红黑树,提供O(log n)时间复杂度的有序操作,适合需要排序和范围查询的场景。两者在不同需求下各有优势,选择时需根据具体应用场景权衡。
34 2
|
3天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
29 6
|
18天前
|
设计模式 Java 开发者
Java多线程编程的陷阱与解决方案####
本文深入探讨了Java多线程编程中常见的问题及其解决策略。通过分析竞态条件、死锁、活锁等典型场景,并结合代码示例和实用技巧,帮助开发者有效避免这些陷阱,提升并发程序的稳定性和性能。 ####
|
16天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
18天前
|
缓存 Java 开发者
Java多线程编程的陷阱与最佳实践####
本文深入探讨了Java多线程编程中常见的陷阱,如竞态条件、死锁和内存一致性错误,并提供了实用的避免策略。通过分析典型错误案例,本文旨在帮助开发者更好地理解和掌握多线程环境下的编程技巧,从而提升并发程序的稳定性和性能。 ####
|
12天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
12天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
35 3