二:Storm的配置项说明

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 配置项 配置说明 storm.zookeeper.servers ZooKeeper服务器列表 storm.zookeeper.port ZooKeeper连接端口 storm.local.dir storm使用的本地文件系统目录(必须存在并且storm进程可读写) storm.cluster.mode Storm集群运行模式([distributed或local]) storm.local.mode.zmq Local模式下是否使用ZeroMQ作消息系统,如果设置为false则使用java消息系统。
配置项 配置说明
storm.zookeeper.servers ZooKeeper服务器列表
storm.zookeeper.port ZooKeeper连接端口
storm.local.dir storm使用的本地文件系统目录(必须存在并且storm进程可读写)
storm.cluster.mode Storm集群运行模式([distributed或local])
storm.local.mode.zmq Local模式下是否使用ZeroMQ作消息系统,如果设置为false则使用java消息系统。默认为false
storm.zookeeper.root ZooKeeper中Storm的根目录位置
storm.zookeeper.session.timeout 客户端连接ZooKeeper超时时间
storm.id 运行中拓扑的id,由storm name和一个唯一随机数组成。
nimbus.host nimbus服务器地址
nimbus.thrift.port nimbus的thrift监听端口
nimbus.childopts 通过storm-deploy项目部署时指定给nimbus进程的jvm选项
nimbus.task.timeout.secs 心跳超时时间,超时后nimbus会认为task死掉并重分配给另一个地址。
nimbus.monitor.freq.secs nimbus检查心跳和重分配任务的时间间隔.注意如果是机器宕掉nimbus会立即接管并处理。
nimbus.supervisor.timeout.secs supervisor的心跳超时时间,一旦超过nimbus会认为该supervisor已死并停止为它分发新任务.
nimbus.task.launch.secs task启动时的一个特殊超时设置.在启动后第一次心跳前会使用该值来临时替代nimbus.task.timeout.secs.
nimbus.reassign 当发现task失败时nimbus是否重新分配执行。默认为真,不建议修改。
nimbus.file.copy.expiration.secs nimbus判断上传/下载链接的超时时间,当空闲时间超过该设定时nimbus会认为链接死掉并主动断开
ui.port Storm UI的服务端口
drpc.servers DRPC服务器列表,以便DRPCSpout知道和谁通讯
drpc.port Storm DRPC的服务端口
supervisor.slots.ports supervisor上能够运行workers的端口列表.每个worker占用一个端口,且每个端口只运行一个worker.通过这项配置可以调整每台机器上运行的worker数.(调整slot数/每机)
supervisor.childopts 在storm-deploy项目中使用,用来配置supervisor守护进程的jvm选项
supervisor.worker.timeout.secs supervisor中的worker心跳超时时间,一旦超时supervisor会尝试重启worker进程.
supervisor.worker.start.timeout.secs supervisor初始启动时,worker的心跳超时时间,当超过该时间supervisor会尝试重启worker。因为JVM初始启动和配置会带来的额外消耗,从而使得第一次心跳会超过supervisor.worker.timeout.secs的设定
supervisor.enable supervisor是否应当运行分配给他的workers.默认为true,该选项用来进行Storm的单元测试,一般不应修改.
supervisor.heartbeat.frequency.secs supervisor心跳发送频率(多久发送一次)
supervisor.monitor.frequency.secs supervisor检查worker心跳的频率
worker.childopts supervisor启动worker时使用的jvm选项.所有的”%ID%”字串会被替换为对应worker的标识符
worker.heartbeat.frequency.secs worker的心跳发送时间间隔
task.heartbeat.frequency.secs task汇报状态心跳时间间隔
task.refresh.poll.secs task与其他tasks之间链接同步的频率.(如果task被重分配,其他tasks向它发送消息需要刷新连接).一般来讲,重分配发生时其他tasks会理解得到通知。该配置仅仅为了防止未通知的情况。
topology.debug 如果设置成true,Storm将记录发射的每条信息。
topology.optimize master是否在合适时机通过在单个线程内运行多个task以达到优化topologies的目的.
topology.workers 执行该topology集群中应当启动的进程数量.每个进程内部将以线程方式执行一定数目的tasks.topology的组件结合该参数和并行度提示来优化性能
topology.ackers topology 中启动的acker任务数.Acker保存由spout发送的tuples的记录,并探测tuple何时被完全处理.当Acker探测到tuple被处理 完毕时会向spout发送确认信息.通常应当根据topology的吞吐量来确定acker的数目,但一般不需要太多.当设置为0时,相当于禁用了消息可 靠性,storm会在spout发送tuples后立即进行确认.
topology.message.timeout.secs topology中spout发送消息的最大处理超时时间.如果一条消息在该时间窗口内未被成功ack,Storm会告知spout这条消息失败。而部分spout实现了失败消息重播功能。
topology.kryo.register 注册到Kryo(Storm底层的序列化框架)的序列化方案列表.序列化方案可以是一个类名,或者是com.esotericsoftware.kryo.Serializer的实现.
topology.skip.missing.kryo.registrations Storm是否应该跳过它不能识别的kryo序列化方案.如果设置为否task可能会装载失败或者在运行时抛出错误.
topology.max.task.parallelism 在一个topology中能够允许的最大组件并行度.该项配置主要用在本地模式中测试线程数限制.
topology.max.spout.pending 一个spout task中处于pending状态的最大的tuples数量.该配置应用于单个task,而不是整个spouts或topology.
topology.state.synchronization.timeout.secs 组件同步状态源的最大超时时间(保留选项,暂未使用)
topology.stats.sample.rate 用来产生task统计信息的tuples抽样百分比
topology.fall.back.on.java.serialization topology中是否使用java的序列化方案
zmq.threads 每个worker进程内zeromq通讯用到的线程数
zmq.linger.millis 当连接关闭时,链接尝试重新发送消息到目标主机的持续时长.这是一个不常用的高级选项,基本上可以忽略.
java.library.path JVM启动(如Nimbus,Supervisor和workers)时的java.library.path设置.该选项告诉JVM在哪些路径下定位本地库.
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
分布式计算 资源调度 Hadoop
Flink安装部署{单机模式、会话模式(集群部署)、yarn模式(包含hadoop3.1.3部署)}
Flink安装部署{单机模式、会话模式(集群部署)、yarn模式(包含hadoop3.1.3部署)}
494 0
|
6月前
|
消息中间件 存储 运维
Kafka重要配置参数全面解读(重要)
Kafka重要配置参数全面解读(重要)
232 2
|
6月前
|
SQL Kubernetes 数据处理
实时计算 Flink版产品使用问题之在 flink-conf.yaml 中定义的配置在某些情况下未被正确应用到 K8s 上运行的任务管理器(JobManager)和任务管理节点(TaskManager),是什么导致的
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
存储 Java Linux
Storm详细配置
Storm详细配置
101 0
|
资源调度 分布式计算 Hadoop
YARN简单概述
YARN简单概述
56 0
|
消息中间件 安全 Kafka
Kafka 服务器参数配置
Kafka 服务器参数配置
347 0
Kafka 服务器参数配置
|
SQL 人工智能 资源调度
Flink on Zeppelin 系列之:Yarn Application 模式支持
Zeppelin 如何实现并使用 Yarn Application 模式。
Flink on Zeppelin 系列之:Yarn Application 模式支持
|
资源调度 分布式计算 Hadoop
Yarn 集群模式_2 | 学习笔记
快速学习 Yarn 集群模式_2
122 0
|
资源调度 分布式计算 大数据
Yarn 集群模式_3 | 学习笔记
快速学习 Yarn 集群模式_3
121 0
|
存储 资源调度 监控
Yarn 日志存储配置
我们知道,yarn上能够监控运行的spark情况,但是一个程序运行完后就会被销毁,看不到了。 所以我们需要在程序运行完也能看到日志,这是就需要配置我们的参数了 1.进入spark conf下,拷贝一个spark.
2690 0