如何快速部署 Prometheus?- 每天5分钟玩转 Docker 容器技术(85)

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 上一节介绍了 Prometheus 的核心,多维数据模型。本节演示如何快速搭建 Prometheus 监控系统。环境说明我们将通过 Prometheus 监控两台 Docker Host:192.168.56.102 和 192.168.56.103,监控 host 和容器两个层次的数据。

上一节介绍了 Prometheus 的核心,多维数据模型。本节演示如何快速搭建 Prometheus 监控系统。

环境说明

我们将通过 Prometheus 监控两台 Docker Host:192.168.56.102 和 192.168.56.103,监控 host 和容器两个层次的数据。

按照架构图,我们需要运行如下组件:

Prometheus Server

Prometheus Server 本身也将以容器的方式运行在 host 192.168.56.103 上。

Exporter

Prometheus 有很多现成的 Exporter,完整列表请参考 https://prometheus.io/docs/instrumenting/exporters/

我们将使用:

  1. Node Exporter,负责收集 host 硬件和操作系统数据。它将以容器方式运行在所有 host 上。

  2. cAdvisor,负责收集容器数据。它将以容器方式运行在所有 host 上。

Grafana

显示多维数据,Grafana 本身也将以容器方式运行在 host 192.168.56.103 上。

运行 Node Exporter

在两个 host 上执行如下命令:

 

docker run -d -p 9100:9100 \
-v "/proc:/host/proc" \
-v "/sys:/host/sys" \
-v "/:/rootfs" \
--net=host \
prom/node-exporter \
--path.procfs /host/proc \
--path.sysfs /host/sys \
--collector.filesystem.ignored-mount-points "^/(sys|proc|dev|host|etc)($|/)"

 

注意,这里我们使用了 --net=host,这样 Prometheus Server 可以直接与 Node Exporter 通信。

Node Exporter 启动后,将通过 9100 提供 host 的监控数据。在浏览器中通过 http://192.168.56.102:9100/metrics 测试一下。

运行 cAdvisor

在两个 host 上执行如下命令:

 

docker run \
--volume=/:/rootfs:ro \
--volume=/var/run:/var/run:rw \
--volume=/sys:/sys:ro \
--volume=/var/lib/docker/:/var/lib/docker:ro \
--publish=8080:8080 \
--detach=true \
--name=cadvisor \
--net=host \
google/cadvisor:latest

 

注意,这里我们使用了 --net=host,这样 Prometheus Server 可以直接与 cAdvisor 通信。

cAdvisor 启动后,将通过 8080 提供 host 的监控数据。在浏览器中通过 http://192.168.56.102:8080/metrics 测试一下。

运行 Prometheus Server

在 host 192.168.56.103 上执行如下命令:

 

docker run -d -p 9090:9090 \
-v /root/prometheus.yml:/etc/prometheus/prometheus.yml \
--name prometheus \
--net=host \
prom/prometheus

 

注意,这里我们使用了 --net=host,这样 Prometheus Server 可以直接与 Exporter 和 Grafana 通信。

prometheus.yml 是 Prometheus Server 的配置文件。

最重要的配置是:

 

static_configs:
- targets: ['localhost:9090','localhost:8080','localhost:9100','192.168.56.102:8080','192.168.56.102:9100']

 

指定从哪些 exporter 抓取数据。这里指定了两台 host 上的 Node Exporter 和 cAdvisor。

另外 localhost:9090 就是 Prometheus Server 自己,可见 Prometheus 本身也会收集自己的监控数据。同样地,我们也可以通过 http://192.168.56.103:9090/metrics 测试一下。

在浏览器中打开 http://192.168.56.103:9090 ,点击菜单 Status -> Targets

如下图所示:

所有 Target  State 都是 UP,说明 Prometheus Server 能够正常获取监控数据。

运行 Grafana

在 host 192.168.56.103 上执行如下命令:

 

docker run -d -i -p 3000:3000 \
-e "GF_SERVER_ROOT_URL=http://grafana.server.name" \
-e "GF_SECURITY_ADMIN_PASSWORD=secret" \
--net=host \
grafana/grafana

 

注意,这里我们使用了 --net=host,这样 Grafana 可以直接与 Prometheus Server 通信。

-e "GF_SECURITY_ADMIN_PASSWORD=secret 指定了 Grafana admin用户密码 secret

Grafana 启动后。在浏览器中打开 http://192.168.56.103:3000/


登录后,Grafana 将引导我们配置 Data Source。

Name 为 Data Source 命名,例如 prometheus

Type 选择 Prometheus

Url 输入 Prometheus Server 的地址 http://192.168.56.103:9090

其他保持默认值,点击 Add

如果一切顺利,Grafana 应该已经能够访问 Prometheus 中存放的监控数据了,那么如何展示呢?

Grafana 是通过 Dashboard 展示数据的,在 Dashboard 中需要定义:

  1. 展示 Prometheus 的哪些多维数据?需要给出具体的查询语言表达式。

  2. 用什么形式展示,比如二维线性图,仪表图,各种坐标的含义等。

可见,要做出一个 Dashboard 也不是件容易的事情。幸运的是,我们可以借助开源社区的力量,直接使用现成的 Dashboard。

访问 https://grafana.com/dashboards?dataSource=prometheus&search=docker,将会看到很多用于监控 Docker 的 Dashboard。

我们可以下载这些现成的 Dashboard,然后 import 到我们的 Grafana 中就可以直接使用了。

比如下载 Docker and system monitoring,得到一个 json 文件,然后点击 Grafana 左上角菜单 Dashboards -> Import

导入我们下载的 json 文件。

Dashboard 将立刻展示出漂亮的图表。


在这个 Dashboard 中,上部分是 host 的数据,我们可以通过 Node 切换不同的 host。


Dashboard 的下半部分展示的是所有的容器监控数据。Grafana 的 Dashboard 是可交互的,我们可以在图表上只显示指定的容器、选取指定的时间区间、重新组织和排列图表、调整刷新频率,功能非常强大。

好了,以上就完成了 Prometheus 监控系统的部署,更多功能大家可以自行探索。到这里我们已经学习了多种 Docker 监控方案,是时候对它们做个比较了,下一节见。

书籍:
1.《每天5分钟玩转Docker容器技术》
https://item.jd.com/16936307278.html

2.《每天5分钟玩转OpenStack》
https://item.jd.com/12086376.html

目录
相关文章
|
Prometheus 监控 Cloud Native
基于Docker+Prometheus+Grafana监控SpringBoot健康信息
使用最新的开源监控系统,监控springboot应用程序
7408 0
|
3月前
|
存储 监控 测试技术
如何将现有的应用程序迁移到Docker容器中?
如何将现有的应用程序迁移到Docker容器中?
267 57
|
4月前
|
存储 运维 安全
Docker化运维:容器部署的实践指南
Docker化运维:容器部署的实践指南
|
3月前
|
存储 监控 Java
如何对迁移到Docker容器中的应用进行性能优化?
如何对迁移到Docker容器中的应用进行性能优化?
254 59
|
3月前
|
NoSQL Redis Docker
使用Docker Compose工具进行容器编排的教程
以上就是使用Docker Compose进行容器编排的基础操作。这能帮你更有效地在本地或者在服务器上部署和管理多容器应用。
328 11
|
3月前
|
缓存 Java Docker
如何对应用代码进行优化以提高在Docker容器中的性能?
如何对应用代码进行优化以提高在Docker容器中的性能?
210 1
|
4月前
|
Docker 容器
Docker网关冲突导致容器启动网络异常解决方案
当执行`docker-compose up`命令时,服务器网络可能因Docker创建新网桥导致IP段冲突而中断。原因是Docker默认的docker0网卡(172.17.0.1/16)与宿主机网络地址段重叠,引发路由异常。解决方法为修改docker0地址段,通过配置`/etc/docker/daemon.json`调整为非冲突段(如192.168.200.1/24),并重启服务。同时,在`docker-compose.yml`中指定网络模式为`bridge`,最后通过检查docker0地址、网络接口列表及测试容器启动验证修复效果。
|
5月前
|
关系型数据库 MySQL 数据库
【赵渝强老师】数据库不适合Docker容器化部署的原因
本文介绍了在Docker中部署MySQL数据库并实现数据持久化的方法,同时分析了数据库不适合容器化的原因。通过具体步骤演示如何拉取镜像、创建持久化目录及启动容器,确保数据安全存储。然而,由于数据安全性、硬件资源争用、网络带宽限制及额外隔离层等问题,数据库服务并不完全适合Docker容器化部署。文中还提到数据库一旦部署通常无需频繁升级,与Docker易于重构和重新部署的特点不符。
292 18
【赵渝强老师】数据库不适合Docker容器化部署的原因
|
2月前
|
安全 持续交付 Docker
Docker:重塑现代软件交付的容器引擎
Docker:重塑现代软件交付的容器引擎