作者:dbtan |【转载时请以超链接形式标明文章出处作者信息】
 

 

 

 


Latch Free(闩锁释放):
Latch Free通常被称为闩锁释放,这个名称常常引起误解,实际上我们应该在前面加上一个“等待”(wait),当数据库出现这个等待时,说明有进程正在等待某个Latch被释放,也就是waiting latch free。

Latch是一种低级排队(串行)机制,用于保护SGA中共享内存结构。Latch就像是一种快速被获取和释放的内存锁,用于防止共享内存结构被多个用户同时访问。其实不必把Latch想得过于复杂,Latch通常就是操作系统利用内存中的某个区域,通过设置变量为0或非0,来表示Latch是否已经被取得,大多数操作系统,是使用TEST AND SET的方式来完成Latch检查或持有的。

为了快速地获得一个直观认识,以下示例展现的了Latch的获取与释放过程。Latch在内存中的位置及名称可以通过下面的语句查询获得:

sys@CCDB> select k.ksmfsadr,ksmfsnam,ksmfstyp,ksmfssiz,kslldnam,kslldlvl
  2  from x$ksmfsv k,x$kslld a
  3  where k.ksmfsnam = 'ksqeql_' and kslldnam = 'enqueues';
KSMFSADR         KSMFSNAM        KSMFSTYP          KSMFSSIZ KSLLDNAM          KSLLDLVL
---------------- --------------- --------------- ---------- --------------- ----------
000000006000CA68 ksqeql_         ksllt                  160 enqueues                 5

得到这些信息之后,可以通过Latch的地址信息手工对Latch进行模拟的持有或释放,注意获取Latch使用了kslgetl过程,释放Latch使用了kslfre,也就是Latch Free过程,如下所示:

sys@CCDB> select to_number('000000006000CA68','XXXXXXXXXXXXXXXX') from dual;
TO_NUMBER('000000006000CA68','XXXXXXXXXXXXXXXX')
------------------------------------------------
                                      1610664552                                      
sys@CCDB> oradebug setmypid
Statement processed.
sys@CCDB> oradebug call kslgetl 1610664552 1
Function returned 1
sys@CCDB> oradebug call kslfre 1610664552
Function returned 0

在这个Latch的短时持有前后,观察这个Latch的等待时间,可以发现大量的Latch等待已经发生,如下所示,这就是Latch、Latch Get和Latch Free的一个直观案例。

sys@CCDB> select name,wait_time from v$latch where name = 'enqueues';
NAME                                                          WAIT_TIME
------------------------------------------------------------ ----------
enqueues                                                              0
sys@CCDB> select name,wait_time from v$latch where name = 'enqueues';
NAME                                                          WAIT_TIME
------------------------------------------------------------ ----------
enqueues                                                              8

在数据库内部,Oracle通过v$latch视图记录不同类型Latch的统计数据,按获取和等待方式不同进行分类,Latch请求的类型可以分为willing-to-wait和immediate两类。
·willing-to-wait:是指如果所请求的Latch不能立即得到,请求进程将等待一段很短的时间后再次发出请求。进程一直重复此过程直到得到Latch。
·immediate:是指如果所请求的Latch不能立即得到,请求进程就不再等待,而是继续执行下去。

在v$latch中以下字段记录了willing-to-wait请求。
· GET:成功地以willing-to-wait请求类型请求一个Latch的次数。
· MISSES:初始以willing-to-wait请求类型请求一个Latch不成功,而进程进入等待的次数。
· SLEEPS:初始以willing-to-wait请求类型请求一个Latch不成功后,进程等待获取Latch时进入休眠的次数。

在v$latch中以下字段记录了immediate类请求。
· IMMEDIATE_GETS:以immediate请求类型成功地获得一个Latch的次数。
· IMMEDIATE_MISSES:以immediate请求类型请求一个Latch不成功的次数。

Oracle的Latch机制是竞争,其处理类似于网络里的CSMA/CD,所有用户进程争夺Latch,对于愿意等待类型(willing-to-wait)的Latch,如果一个进程在第一次尝试中没有获得Latch开始自旋(spin),如果经过_spin_count次争夺不能获得Latch,然后该进程转入睡眠状态,持续一段指定长度的时间,然后再次醒来,按顺序重复以前的步骤。这一过程可以下图来说明:

用户进程争夺Latch的过程

SPIN的次数受隐含参数_spin_count影响,该参数的缺省值为2000。以下数据取自Oracle 11gR1 + Linux环境:

sys@CCDB> select * from v$version where rownum < 2;
BANNER
----------------------------------------------------------------------------
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - 64bit Production

该系统存在4颗CPU:

sys@CCDB> show parameter cpu_count
NAME                                 TYPE            VALUE
------------------------------------ --------------- ---------
cpu_count                            integer         4

_spin_count的缺省值即为2000:

sys@CCDB> @GetHidPar.sql
Enter value for par: _spin_count
old   4: AND x.ksppinm LIKE '%&par%'
new   4: AND x.ksppinm LIKE '%_spin_count%'
NAME                           VALUE                DESCRIB
------------------------------ -------------------- ----------------------------------
_spin_count                    2000                 Amount to spin waiting for a latch
_kgx_spin_count                255                  third spare parameter - integer

从以上过程可以看到,在spin的过程中,进程会一直持有CPU,spin的机制是假设Latch可以被快速释放(正常情况下,Latch的持有时间是微秒级,相对spin机制如果直接采用Sleep方式引起的上下文切换会相当昂贵,所以Oracle针对Latch引入了spin算法),如果其他CPU上的其他进程释放了Latch,SPIN进程就可以立即获得这个Latch。如果系统只有单CPU,那就谈不上SPIN了。另一方面也可以看到,Latch竞争是非常昂贵的,可能导致严重的CPU耗用,所以Latch竞争在任何时候都应该引起充分的重视。经过spin后成功获得Latch的次数被记录在v$latch.spin_gets字段。通过下图来说明一下Latch竞争的情况。

Latch竞争示意图

 

继续来具体看一下willing-to-wait和immediate两类Latch的大致数量,以下查询来自Oracle 11gR1(同以上数据库):

sys@CCDB> select count(*) from v$latch;
  COUNT(*)
----------
       496
sys@CCDB> select count(*) from v$latch where IMMEDIATE_GETS + IMMEDIATE_MISSES > 0;
  COUNT(*)
----------
        26
sys@CCDB> select count(*) from v$latch where IMMEDIATE_GETS + IMMEDIATE_MISSES = 0;
  COUNT(*)
----------
       470

可以看到willing-to-wait类型的等待事件占了绝大部分,immediate类型的仅为少数:

sys@CCDB> select name,immediate_gets,immediate_misses,spin_gets
  2  from v$latch
  3  where immediate_gets + immediate_misses > 0
  4  order by immediate_gets desc;
NAME                           IMMEDIATE_GETS IMMEDIATE_MISSES  SPIN_GETS
------------------------------ -------------- ---------------- ----------
cache buffers chains                    58212                1          9
hash table column usage latch           34803                0          0
cache buffers lru chain                 30936               92         17
redo copy                                9646               11          0
redo allocation                          9646                0          1
JOX SGA heap latch                       2257                0          0
space background task latch              2102                0          0
checkpoint queue latch                   1712                0          0
In memory undo latch                     1371                0          0
simulator lru latch                      1312                1         17
active service list                      1077                0          0
Memory Management Latch                  1055                0          0
SQL memory manager latch                 1045                0          0
KTF sga latch                             980                0          0
cache table scan latch                    394                1          0
process queue reference                   131                1          1
job workq parent latch                    114                0          0
process allocation                        109                0          0
MQL Tracking Latch                         63                0          0
post/wait queue                             8                0          0
SGA IO buffer pool latch                    4                0          0
query server process                        3                0          0
shared server configuration                 2                0          0
object queue header heap                    2                0          0
JOX JIT latch                               1                0          0
object stats modification                   1                0          0
26 rows selected.

需要注意的是,immediate类型的Latch通常是因为存在多个可用Latch,最常见的如redo copy latch,当process想要取得redo copy latch时,它首先要求其中一个Latch,如果可以取得就持有该Latch,如果不能获取,它会立刻转向要求另一个redo copy latch,只有所有redo copy latch都无法取得时,才会sleep与wait。

immediate的另外一种原因是每个Latch都有level的概念(level=1 - 14),当一个process需要取得一组Latches时,为避免死锁,取得Latches有一定的顺序,即process新请求的Latch的level,应该大于process目前所握有的Latch的level。所以如果process要求的新Latch的level小于目前所持有的Latch的level,正常情况下,Oracle要求process先释放目前所持有的所有Latch,再依次取得这些Latch。为节省时间,Oracle允许进程以no-wait方式要求较低level的Latch,如果成功取得,既可以避免deadlcok又可以节省时间。

在Oracle 10g之前,Latch Free同Enqueue一样,是一个汇总等待。从Oracle 10g开始,这个等待被分解,现在可以更直接地通过会话等待得知具体的Latch发生在哪些资源上:

sys@CCDB> select name,wait_class
  2  from v$event_name
  3  where name like '%latch%';
NAME                                               WAIT_CLASS
-------------------------------------------------- --------------------
latch: cache buffers chains                        Concurrency
latch: redo writing                                Configuration
latch: redo copy                                   Configuration
latch: Undo Hint Latch                             Concurrency
latch: In memory undo latch                        Concurrency
latch: MQL Tracking Latch                          Concurrency
latch: row cache objects                           Concurrency
latch: shared pool                                 Concurrency
latch free                                         Other
latch activity                                     Other
wait list latch activity                           Other
wait list latch free                               Other
latch: session allocation                          Other
latch: messages                                    Other
latch: enqueue hash chains                         Other
latch: ges resource hash list                      Other
ges2 proc latch in rm latch get 1                  Other
ges2 proc latch in rm latch get 2                  Other
gcs remastering wait for write latch               Other
gcs remastering wait for read latch                Other
latch: gcs resource hash                           Other
latch: cache buffers lru chain                     Other
latch: checkpoint queue latch                      Other
latch: cache buffer handles                        Other
buffer latch                                       Other
latch: object queue header operation               Other
latch: redo allocation                             Other
latch: gc element                                  Other
latch: undo global data                            Other
latch: Change Notification Hash table latch        Other
latch: change notification client cache latch      Other
latch: lob segment hash table latch                Other
latch: lob segment query latch                     Other
latch: lob segment dispenser latch                 Other
waiting to get CAS latch                           Other
waiting to get RM CAS latch                        Other
latch: virtual circuit queues                      Other
PX qref latch                                      Other
latch: parallel query alloc buffer                 Other
39 rows selected.

最常见的Latch集中于Buffer Cache的竞争和Shared Pool的竞争。和Buffer Cache相关的主要Latch竞争有cache buffers chains和cache buffers lru chain,和Shared Pool相关的主要Latch竞争有Shared Pool Latch和Library Cache Latch等。

Buffer Cache的Latch竞争经常是由于热点块竞争引起;Shared Pool的Latch竞争通常是由于SQL的量硬解析引起。