faster rcnn test demo ---repaired for video input and save the image, label, score et al. into .mat format

简介: faster rcnn test demo ---repaired for video input and save the image, label, score et al. into .mat formatfunction script_faster_rcnn_demo() close ...
faster rcnn test demo ---repaired for video input and save the image, label, score et al. into .mat format



function script_faster_rcnn_demo() close all; clc; clear mex; clear is_valid_handle; % to clear init_key run(fullfile(fileparts(fileparts(mfilename('fullpath'))), 'startup')); %% -------------------- CONFIG -------------------- opts.caffe_version = 'caffe_faster_rcnn'; opts.gpu_id = auto_select_gpu; active_caffe_mex(opts.gpu_id, opts.caffe_version); opts.per_nms_topN = 6000; opts.nms_overlap_thres = 0.7; opts.after_nms_topN = 300; opts.use_gpu = true; opts.test_scales = 600; % %% -------------------- INIT_MODEL -------------------- % model_dir = fullfile(pwd, 'output', 'faster_rcnn_final', 'faster_rcnn_VOC0712_vgg_16layers'); %% VGG-16 model_dir = fullfile(pwd, 'output', 'faster_rcnn_final', 'faster_rcnn_VOC0712_ZF'); %% ZF proposal_detection_model = load_proposal_detection_model(model_dir); proposal_detection_model.conf_proposal.test_scales = opts.test_scales; proposal_detection_model.conf_detection.test_scales = opts.test_scales; if opts.use_gpu proposal_detection_model.conf_proposal.image_means = gpuArray(proposal_detection_model.conf_proposal.image_means); proposal_detection_model.conf_detection.image_means = gpuArray(proposal_detection_model.conf_detection.image_means); end % caffe.init_log(fullfile(pwd, 'caffe_log')); % proposal net rpn_net = caffe.Net(proposal_detection_model.proposal_net_def, 'test'); rpn_net.copy_from(proposal_detection_model.proposal_net); % fast rcnn net fast_rcnn_net = caffe.Net(proposal_detection_model.detection_net_def, 'test'); fast_rcnn_net.copy_from(proposal_detection_model.detection_net); % set gpu/cpu if opts.use_gpu caffe.set_mode_gpu(); else caffe.set_mode_cpu(); end %% -------------------- WARM UP -------------------- % the first run will be slower; use an empty image to warm up for j = 1:2 % we warm up 2 times im = uint8(ones(375, 500, 3)*128); if opts.use_gpu im = gpuArray(im); end [boxes, scores] = proposal_im_detect(proposal_detection_model.conf_proposal, rpn_net, im); aboxes = boxes_filter([boxes, scores], opts.per_nms_topN, opts.nms_overlap_thres, opts.after_nms_topN, opts.use_gpu); if proposal_detection_model.is_share_feature [boxes, scores] = fast_rcnn_conv_feat_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ... rpn_net.blobs(proposal_detection_model.last_shared_output_blob_name), ... aboxes(:, 1:4), opts.after_nms_topN); else [boxes, scores] = fast_rcnn_im_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ... aboxes(:, 1:4), opts.after_nms_topN); end end %% -------------------- TESTING -------------------- % im_names = {'001763.jpg', '004545.jpg', '000542.jpg', '000456.jpg', '001150.jpg'}; % these images can be downloaded with fetch_faster_rcnn_final_model.m % for j = 1:length(im_names) % im = imread(fullfile(pwd, im_names{j})); %% -------------------------- Video ------------------ %% initialization video_names = {}; %% --------------path for test ------------ path = '/media/wangxiao/247317a3-e6b5-45d4-81d1-956930526746/video/test_video/'; savePath = '/media/wangxiao/247317a3-e6b5-45d4-81d1-956930526746/video/test_video_images/'; %% ---------------path for the 4TB drive---------- % path = '/media/wangxiao/Seagate/pedestrian data/'; % savePath = '/media/wangxiao/Seagate/pedestrian data/pedestrian frame/'; % video_dir = dir(path); video_dir = dir(fullfile(path, '*.avi')); % if isempty(video_dir) % video_dir = dir(fullfile(path, '*.mp4')); % end % if isempty(video_dir) % video_dir = dir(fullfile(path, '*.rmvb')); % end % if isempty(video_dir) % video_dir = dir(fullfile(path, '*.mkv')); % end %% k =1; for i = 1:length(video_dir) if ~video_dir(i).isdir video_names{k} = video_dir(i).name; % 视频的名字 保存在video_name中; k = k+1; end end clear k; running_time = []; %% 将视频load进来,切割为图像,存储 for j = 1:length(video_dir) %视频级别; % 弹出错误提示: Could not read file due to an unexpected error. Reason: % Unable to initialize the video obtain properties ... frames = VideoReader (strcat(path, video_dir(j).name)); numFrames =frames.NumberOfFrames; for k = 1 : 30: numFrames disp(['saving the ',num2str(k),'-th frames, please waiting....']); frame = read(frames,k); %将frame存储起来; frame = imresize(frame, [200, 300]); % 是否要对图像进行resize ? imwrite(frame,[savePath,sprintf('%08d.png',k)]); end end %% 读取图像,输入给 faster rcnn image_path = savePath; imageFile = dir([image_path, '*.png']); for iii = 1:length(imageFile) im = imread([image_path, imageFile(iii).name]); if opts.use_gpu im = gpuArray(im); end % test proposal th = tic(); [boxes, scores] = proposal_im_detect(proposal_detection_model.conf_proposal, rpn_net, im); t_proposal = toc(th); th = tic(); aboxes = boxes_filter([boxes, scores], opts.per_nms_topN, opts.nms_overlap_thres, opts.after_nms_topN, opts.use_gpu); t_nms = toc(th); % test detection th = tic(); if proposal_detection_model.is_share_feature [boxes, scores] = fast_rcnn_conv_feat_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ... rpn_net.blobs(proposal_detection_model.last_shared_output_blob_name), ... aboxes(:, 1:4), opts.after_nms_topN); else [boxes, scores] = fast_rcnn_im_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ... aboxes(:, 1:4), opts.after_nms_topN); end t_detection = toc(th); fprintf('%s (%dx%d): time %.3fs (resize+conv+proposal: %.3fs, nms+regionwise: %.3fs)\n', ['the ' num2str(j) '-th image '], size(im, 2), size(im, 1), t_proposal + t_nms + t_detection, t_proposal, t_nms+t_detection); running_time(end+1) = t_proposal + t_nms + t_detection; %% visualize 可视化; classes = proposal_detection_model.classes; % 20类物体,包括行人这一类; boxes_cell = cell(length(classes), 1); % 20*1 cell; thres = 0.6; for i = 1:length(boxes_cell) boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)]; boxes_cell{i} = boxes_cell{i}(nms(boxes_cell{i}, 0.3), :); I = boxes_cell{i}(:, 5) >= thres; boxes_cell{i} = boxes_cell{i}(I, :); end figure(j); [location, label, score] = output(im, boxes_cell, classes, 'voc'); if (score==0) continue; else % disp(imageFile(iii).name); save(['./mat results/' imageFile(iii).name '.mat' ], 'location', 'label', 'score', 'im'); end showboxes(im, boxes_cell, classes, 'voc'); pause(0.1); end % eval(['movie_' num2str(k) '_' class_filenames{NUM} '= im_names;']); % clear im_names; % % eval(['movie_bb_' num2str(k) '_' class_filenames{NUM} '= video_cell;']) % clear video_cell; % % if ~exist([fullfile(pwd, 'video_frames'),'/','video.mat'],'file') % save('./video_frames/video.mat',['movie_' num2str(k) '_' class_filenames{NUM}]); % save('./video_frames/video_bb.mat',['movie_bb_' num2str(k) '_' class_filenames{NUM}]); % else % save('./video_frames/video.mat',['movie_' num2str(k) '_' class_filenames{NUM}],'-append'); % save('./video_frames/video_bb.mat',['movie_bb_' num2str(k) '_' class_filenames{NUM}], '-append'); % end % % eval(['clear movie_' num2str(k)]); % eval(['clear movie_bb_' num2str(k)]); % save('im_boxes.mat','im_cell'); fprintf('mean time: %.3fs\n', mean(running_time)); caffe.reset_all(); clear mex; end function proposal_detection_model = load_proposal_detection_model(model_dir) ld = load(fullfile(model_dir, 'model')); proposal_detection_model = ld.proposal_detection_model; clear ld; proposal_detection_model.proposal_net_def ... = fullfile(model_dir, proposal_detection_model.proposal_net_def); proposal_detection_model.proposal_net ... = fullfile(model_dir, proposal_detection_model.proposal_net); proposal_detection_model.detection_net_def ... = fullfile(model_dir, proposal_detection_model.detection_net_def); proposal_detection_model.detection_net ... = fullfile(model_dir, proposal_detection_model.detection_net); end function aboxes = boxes_filter(aboxes, per_nms_topN, nms_overlap_thres, after_nms_topN, use_gpu) % to speed up nms if per_nms_topN > 0 aboxes = aboxes(1:min(length(aboxes), per_nms_topN), :); end % do nms if nms_overlap_thres > 0 && nms_overlap_thres < 1 aboxes = aboxes(nms(aboxes, nms_overlap_thres, use_gpu), :); end if after_nms_topN > 0 aboxes = aboxes(1:min(length(aboxes), after_nms_topN), :); end end

 

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
7月前
|
机器学习/深度学习 算法 安全
FRCNN来袭 | Faster RCNN与FCN永不遗忘,联邦学习+边缘数据既保护隐私也提升性能
FRCNN来袭 | Faster RCNN与FCN永不遗忘,联邦学习+边缘数据既保护隐私也提升性能
305 0
|
机器学习/深度学习 算法 数据挖掘
m基于Faster R-CNN网络的烟雾检测系统matlab仿真,带GUI操作界面
m基于Faster R-CNN网络的烟雾检测系统matlab仿真,带GUI操作界面
133 0
|
7月前
|
机器学习/深度学习 数据可视化 定位技术
PrObeD方法开源 | 主动方法助力YOLOv5/Faster RCNN/DETR在COCO/GOD涨点
PrObeD方法开源 | 主动方法助力YOLOv5/Faster RCNN/DETR在COCO/GOD涨点
83 0
|
机器学习/深度学习 算法 数据挖掘
二阶段目标检测网络-Faster RCNN 详解
二阶段目标检测网络-Faster RCNN 详解
392 0
|
7月前
|
机器学习/深度学习 监控 算法
【Keras计算机视觉】Faster R-CNN神经网络实现目标检测实战(附源码和数据集 超详细)
【Keras计算机视觉】Faster R-CNN神经网络实现目标检测实战(附源码和数据集 超详细)
139 0
|
7月前
|
机器学习/深度学习 算法 固态存储
【计算机视觉】目标检测中Faster R-CNN、R-FCN、YOLO、SSD等算法的讲解(图文解释 超详细必看)
【计算机视觉】目标检测中Faster R-CNN、R-FCN、YOLO、SSD等算法的讲解(图文解释 超详细必看)
467 0
|
机器学习/深度学习 算法 计算机视觉
m基于Faster R-CNN网络的火灾识别系统matlab仿真,带GUI界面
m基于Faster R-CNN网络的火灾识别系统matlab仿真,带GUI界面
111 0
|
机器学习/深度学习 人工智能 算法
目标检测:RPN — Faster R-CNN 的主干
目标检测:RPN — Faster R-CNN 的主干
257 0
|
编解码 开发工具 计算机视觉
Faster RCNN超快版本来啦 | TinyDet用小于1GFLOPS实现30+AP,小目标炸裂(二)
Faster RCNN超快版本来啦 | TinyDet用小于1GFLOPS实现30+AP,小目标炸裂(二)
585 0
|
机器学习/深度学习 编解码 人工智能
Faster RCNN超快版本来啦 | TinyDet用小于1GFLOPS实现30+AP,小目标炸裂(一)
Faster RCNN超快版本来啦 | TinyDet用小于1GFLOPS实现30+AP,小目标炸裂(一)
250 0

热门文章

最新文章

下一篇
DataWorks