浅谈 Active Learning

简介: 1. Active Query Driven by Uncertainty and Diversity for Incremental Multi-Label Learning   The key task in active learning is to design a selection ...

1. Active Query Driven by Uncertainty and Diversity for Incremental Multi-Label Learning

 

The key task in active learning is to design a selection criterion such that queried labels can improve the classification model most.

many active selection criteria: 

uncertainty measures the confidence of the current model on classifying an instance ,

diversity measures how different an instance is from the labeled data ,

density measures the representativeness of an instance to the whole data set .

 

In traditional supervised classification problems, one instance is assumed to be associated with only one label. However, in many real world applications, an object can have multiple labels simultaneously. Multi-label learning is a framework dealing with such objects.

 

目录
打赏
0
0
0
0
8
分享
相关文章
Automated defect inspection system for metal surfaces based on deep learning and data augmentation
简述:卷积变分自动编码器(CVAE)生成特定的图像,再使用基于深度CNN的缺陷分类算法进行分类。在生成足够的数据来训练基于深度学习的分类模型之后,使用生成的数据来训练分类模型。
180 0
【Papernotes】Applying Deep Learning To Airbnb Search
这篇论文详细地记录了 Airbnb 将深度学习引入搜索排名的实践经验,有失败以及对失败的反思,还有在反思的基础上取得的成功。
452 0
【Papernotes】Applying Deep Learning To Airbnb Search
Machine learning preface
Machine learning Preface Definition T: Task E: Experience P: Performance Sequence: T -> E -> P Supervised learning Definition Give the right answer...
933 0
18 Issues in Current Deep Reinforcement Learning from ZhiHu
深度强化学习的18个关键问题   from: https://zhuanlan.zhihu.com/p/32153603     85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两天我阅读了两篇篇猛文A Brief Survey of Deep Reinforcement Learning 和 Deep Reinforcement Learning: An Overview ,作者排山倒海的引用了200多篇文献,阐述强化学习未来的方向。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等