论文笔记之:Instance-aware Semantic Segmentation via Multi-task Network Cascades

简介: Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun   本文的出发点是做Instance-aware Semantic Segmentati...

 

Instance-aware Semantic Segmentation via Multi-task Network Cascades

Jifeng Dai Kaiming He Jian Sun

 

本文的出发点是做Instance-aware Semantic Segmentation,但是为了做好这个,作者将其分为三个子任务来做:

1) Differentiating instances. 实例区分

2) Estimating masks.    掩膜估计

3) Categorizing objects.   分类目标

 

通过这种分解,作者提出了如下的多任务学习框架,即:Multi-task Network Cascades (MNCs),示意流程如下:

 

下面详细的介绍下这个流程,即:

1. Multi-task Network Cascades

1). Regressing Box-level Instances 

  第一个阶段是回归出物体的bbox,这是一个全卷积的子网络。本文follow了Faster R-CNN的提取proposal的方法Region Proposal Networks (RPNs)。在共享feature之前,作者先用了一个 3*3的Conv 用于降维,紧跟着用2个1*1的Conv层回归出其位置,并且对目标进行分类。该阶段的loss function是:

其中,B是该阶段的输出,是一系列的box,B = { Bi }, Bi = { xi; yi; wi; hi; pi },box的中心点和长宽分别是:xi yi wi hi, yi是物体的概率。

 

2). Regressing Mask-level Instances 

  该阶段的输出是对每一个box的proposal进行像素级的mask分割。

    Given a box predicted by stage 1, we extract a feature of this box by Region-of-Interest (RoI) pooling . The purpose of RoI pooling is for producing a fixed-size feature from an arbitrary box, which is set as 14*

目录
打赏
0
0
0
0
8
分享
相关文章
文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency,大panel二代测序的一致性和重复性:对具有错配修复和校对缺陷的参考物质进行体细胞突变检测的多实验室评估
53 6
文献解读-Consistency and reproducibility of large panel next-generation sequencing: Multi-laboratory assessment of somatic mutation detection on reference materials with mismatch repair and proofreading deficiency
【文献学习】Channel Estimation Method Based on Transformer in High Dynamic Environment
一种基于CNN和Transformer的信道估计方法,用于在高度动态环境中跟踪信道变化特征,并通过实验结果展示了其相比传统方法的性能提升。
92 0
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
92 1
MUSIED: A Benchmark for Event Detection from Multi-Source Heterogeneous Informal Texts 论文解读
事件检测(ED)从非结构化文本中识别和分类事件触发词,作为信息抽取的基本任务。尽管在过去几年中取得了显著进展
94 0
【论文精读】COLING 2022 - CLIO: Role-interactive Multi-event Head Attention Network for DEE
将网络上的大量非结构化文本转换为结构化事件知识是NLP的一个关键但尚未解决的目标,特别是在处理文档级文本时。
87 0
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
171 0
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
141 0
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
论文阅读:AM-GCN Adaptive Multi-channel Graph Convolutional Networks
论文阅读:AM-GCN Adaptive Multi-channel Graph Convolutional Networks
214 0
论文阅读:AM-GCN Adaptive Multi-channel Graph Convolutional Networks
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等