论文笔记之:DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns

简介: DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns CVPR 2016     本文提出一种 分割图像 patch 的方法,因为细粒度的分类问题,如:行人动作识别 和 行人属性识别等等。

 

DeepCAMP: Deep Convolutional Action & Attribute Mid-Level Patterns

CVPR 2016

 

  本文提出一种 分割图像 patch 的方法,因为细粒度的分类问题,如:行人动作识别 和 行人属性识别等等。

  Appearance Overview 

  本文提出一种利用 mid-level 深度视觉模式 进行动作和属性分类,这是属于细粒度分类任务。我们的一个想法是:一个较好的 embedding 可以改善聚类算法的质量。我们设计了一种迭代算法,在每次迭代中,我们通过训练一个新的 CNN 来对上一次迭代得到的 cluster labels 进行分类,以此来改善 embedding。此外,我们相信结合人物整体的信息和 context 以及 图像 patch 的特定动作和属性标签可以改善 mid-level elements 的clusters。所以,我们从 AlexNet 网络结构上进行改进,以结合 patch 和 global image 的 feature。实验表明,利用这种新的结构学到的 embedding 性能超过了仅仅使用 patch images 微调后的 AlexNet 网络结构。

  此外,在每次迭代过程中,我们通过移除 poorly scored patches 来改善 clusters。作者提到本文的两个贡献点为:

  1). design an iterative algorithm contains an expert patch CNN to improve the embedding ;

  2). proposing new patch CNN architecture training to use context in clustering the patches.

 

  Pipeline Details

  1. Initial feture extraction and clustering.

    第一个模块 利用 MDPM 对image patches 进行 聚类。

  2. Train patch clusters CNN.

    我们主要的意识认为 图像 patches 的表示在聚类上扮演了重要的角色。假设初始的聚类是合理的,在这个模块,我们训练一个新的 CNN 来改善表示。训练这个新的 CNN 的目的就是当给定图像 patch的时候,可以预测 cluster 的 label。这里就和之前的那个 CNN 区别开来,之前的那个是为了 classify bounding box images to different action categories. 我们相信利用判别性的 patch cluster CNN results 学习这个细粒度的分类可以得到一个更好的聚类表示。  

  Updating clusters

  既然已经用新训练的 CNN 学习了表示,那么我们利用 MDPM算法再一次的更新 clusters 以得到一个更好的 clusters 的集合来匹配新的表示。由于在 MDPM 中进行 mid-level clusters 的填充是非常耗时的,我们固定住 第一层的聚类,然后通过重复 re-clustering 和 利用新的表示融合来更新 clusters。这个可以得到更好的聚类,最后,我们训练新的 LDA 分类器来检测 clusters。为了进行 re-clustering而改进的 MDPM在 4.1节进行了描述。

  Harvesting patches.

  为了改善 clusters 的纯度,我们通过移除不适合任何 cluster的patches来清理 clusters。我们通过阈值化 LDA 分类器为每一个cluster产生的置信值来达到此效果。最终,we pass the new patches with associate cluster labels to learn a new CNN based representation. 

 

  3. Mid-level Deep Patterns Network

  说实话,感觉看到这里,感觉整个流程写的挺混乱的。我哩个去。。。让我先整理下思路。。。懵逼了。。。

  


  Experience 

  

   

 

 

 

 


  我的感受:

    夜深了,我要入睡了。。。

    明天再 bb

 

 

 

 

 

 

相关文章
|
数据挖掘
【提示学习】Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification
文章提出了一种简单确高效地构建verbalization的方法:
|
数据挖掘
【提示学习】Prompt Tuning for Multi-Label Text Classification: How to Link Exercises to Knowledge Concept
文章这里使用的是BCEWithLogitsLoss,它适用于多标签分类。即:把[MASK]位置预测到的词表的值进行sigmoid,取指定阈值以上的标签,然后算损失。
|
机器学习/深度学习 移动开发 自然语言处理
DEPPN:Document-level Event Extraction via Parallel Prediction Networks 论文解读
当在整个文档中描述事件时,文档级事件抽取(DEE)是必不可少的。我们认为,句子级抽取器不适合DEE任务,其中事件论元总是分散在句子中
132 0
DEPPN:Document-level Event Extraction via Parallel Prediction Networks 论文解读
|
机器学习/深度学习 自然语言处理 索引
GTEE-DYNPREF: Dynamic Prefix-Tuning for Generative Template-based Event Extraction 论文解读
我们以基于模板的条件生成的生成方式考虑事件抽取。尽管将事件抽取任务转换为带有提示的序列生成问题的趋势正在上升,但这些基于生成的方法存在两个重大挑战
140 0
|
人工智能 自然语言处理 算法
【论文精读】AAAI 2022 - OneRel Joint Entity and Relation Extraction with One Module in One Step
联合实体和关系提取是自然语言处理和知识图构建中的一项重要任务。现有的方法通常将联合提取任务分解为几个基本模块或处理步骤,以使其易于执行
207 0
|
机器学习/深度学习 自然语言处理 算法
TPLinker: Single-stage Joint Extraction of Entities and Relations Through Token Pair Linking 论文解读
近年来,从非结构化文本中提取实体和关系引起了越来越多的关注,但由于识别共享实体的重叠关系存在内在困难,因此仍然具有挑战性。先前的研究表明,联合学习可以显著提高性能。然而,它们通常涉及连续的相互关联的步骤,并存在暴露偏差的问题。
217 0
|
机器学习/深度学习 数据挖掘
【多标签文本分类】HFT-CNN: Learning Hierarchical Category Structure for Multi-label Short Text Categorization
【多标签文本分类】HFT-CNN: Learning Hierarchical Category Structure for Multi-label Short Text Categorization
213 0
【多标签文本分类】HFT-CNN: Learning Hierarchical Category Structure for Multi-label Short Text Categorization
|
机器学习/深度学习 数据采集 人工智能
论文阅读:Deep multi-view learning methods A review
论文阅读:Deep multi-view learning methods A review
785 0
论文阅读:Deep multi-view learning methods A review
|
机器学习/深度学习 算法
Re9:读论文 DEAL Inductive Link Prediction for Nodes Having Only Attribute Information
Re9:读论文 DEAL Inductive Link Prediction for Nodes Having Only Attribute Information
Re9:读论文 DEAL Inductive Link Prediction for Nodes Having Only Attribute Information
|
数据挖掘
Re19:读论文 Paragraph-level Rationale Extraction through Regularization: A case study on European Court
Re19:读论文 Paragraph-level Rationale Extraction through Regularization: A case study on European Court
Re19:读论文 Paragraph-level Rationale Extraction through Regularization: A case study on European Court