日志采集框架Flume以及Flume的安装部署(一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Flume支持众多的source和sink类型,详细手册可参考官方文档,更多source和sink组件 http://flume.apache.org/FlumeUserGuide.html Flume官网入门指南:  1:Flume的概述和介绍: (1):Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。

 Flume支持众多的source和sink类型,详细手册可参考官方文档,更多source和sink组件

http://flume.apache.org/FlumeUserGuide.html

Flume官网入门指南:


 1:Flume的概述和介绍:

(1):Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。
(2):Flume可以采集文件,socket数据包等各种形式源数据,又可以将采集到的数据输出到HDFS、hbase、hive、kafka等众多外部存储系统中
(3):一般的采集需求,通过对flume的简单配置即可实现
(4):Flume针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景

2:Flume的运行机制:

(1):Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成。

(2):每一个agent相当于一个数据传递员,内部有三个组件:
    a):Source:采集源,用于跟数据源对接,以获取数据。
    b):Sink:下沉地,采集数据的传送目的,用于往下一级agent传递数据或者往最终存储系统传递数据。
    c):Channel:angent内部的数据传输通道,用于从source将数据传递到sink。

注意:Source 到 Channel 到 Sink之间传递数据的形式是Event事件;Event事件是一个数据流单元。

 下面介绍单个Agent的fulme数据采集示意图:

 多级agent之间串联示意图:

 3:Flume的安装部署:

(1)、Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境:
  a):上传安装包到数据源所在节点上,上传过程省略。
  b):然后解压  tar -zxvf apache-flume-1.6.0-bin.tar.gz;

    [root@master package]# tar -zxvf apache-flume-1.6.0-bin.tar.gz -C /home/hadoop/
  c):然后进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME;(由于conf目录下面是 flume-env.sh.template,所以我复制一个flume-env.sh,然后进行修改JAVA_HOME

    [root@master conf]# cp flume-env.sh.template flume-env.sh

    [root@master conf]# vim flume-env.sh

    然后将#注释去掉,加上自己的JAVA_HOME:export JAVA_HOME=/home/hadoop/jdk1.7.0_65
(2)、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义);
(3)、指定采集方案配置文件,在相应的节点上启动flume agent;

(4)、可以先用一个最简单的例子来测试一下程序环境是否正常(在flume的conf目录下新建一个文件);

4:部署安装好,可以开始配置采集方案(这里是一个简单的采集方案配置的使用,从网络端口接收数据,然后下沉到logger), 然后需要配置一个文件,这个采集配置文件名称,netcat-logger.conf,采集配置文件netcat-logger.conf的内容如下所示:

 1 # example.conf: A single-node Flume configuration
 2 
 3 # Name the components on this agent
 4 #定义这个agent中各组件的名字,给那三个组件sources,sinks,channels取个名字,是一个逻辑代号:
 5 #a1是agent的代表。
 6 a1.sources = r1
 7 a1.sinks = k1
 8 a1.channels = c1
 9 
10 # Describe/configure the source 描述和配置source组件:r1
11 #类型, 从网络端口接收数据,在本机启动, 所以localhost, type=spoolDir采集目录源,目录里有就采
12 #type是类型,是采集源的具体实现,这里是接受网络端口的,netcat可以从一个网络端口接受数据的。netcat在linux里的程序就是nc,可以学习一下。
13 #bind绑定本机localhost。port端口号为44444。
14 
15 a1.sources.r1.type = netcat
16 a1.sources.r1.bind = localhost
17 a1.sources.r1.port = 44444
18 
19 # Describe the sink 描述和配置sink组件:k1
20 #type,下沉类型,使用logger,将数据打印到屏幕上面。
21 a1.sinks.k1.type = logger
22 
23 # Use a channel which buffers events in memory 描述和配置channel组件,此处使用是内存缓存的方式
24 #type类型是内存memory。
25 #下沉的时候是一批一批的, 下沉的时候是一个个eventChannel参数解释:
26 #capacity:默认该通道中最大的可以存储的event数量,1000是代表1000条数据。
27 #trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量。
28 a1.channels.c1.type = memory
29 a1.channels.c1.capacity = 1000
30 a1.channels.c1.transactionCapacity = 100
31 
32 # Bind the source and sink to the channel 描述和配置source  channel   sink之间的连接关系
33 #将sources和sinks绑定到channel上面。
34 a1.sources.r1.channels = c1
35 a1.sinks.k1.channel = c1

下面在flume的conf目录下面编辑这个文件netcat-logger.conf:

[root@master conf]# vim netcat-logger.conf

 启动agent去采集数据,然后可以进行启动了,启动命令如下所示:

bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1  -Dflume.root.logger=INFO,console

  -c conf   指定flume自身的配置文件所在目录

  -f conf/netcat-logger.con  指定我们所描述的采集方案

  -n a1  指定我们这个agent的名字

1 启动命令:
2 #告诉flum启动一个agent。
3 #--conf conf指定配置参数,。
4 #conf/netcat-logger.conf指定采集方案的那个文件(自命名)。
5 #--name a1:agent的名字,即agent的名字为a1。
6 #-Dflume.root.logger=INFO,console给log4j传递的参数。
7 $ bin/flume-ng agent --conf conf --conf-file conf/netcat-logger.conf --name a1 -Dflume.root.logger=INFO,console

 演示如下所示:

 启动的信息如下所示,可以启动到前台,也可以启动到后台:

 1 [root@master apache-flume-1.6.0-bin]# bin/flume-ng agent --conf conf --conf-file conf/netcat-logger.conf --name a1 -Dflume.root.logger=INFO,console
 2 Info: Sourcing environment configuration script /home/hadoop/apache-flume-1.6.0-bin/conf/flume-env.sh
 3 Info: Including Hadoop libraries found via (/home/hadoop/hadoop-2.4.1/bin/hadoop) for HDFS access
 4 Info: Excluding /home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/slf4j-api-1.7.5.jar from classpath
 5 Info: Excluding /home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar from classpath
 6 Info: Including Hive libraries found via () for Hive access
 7 + exec /home/hadoop/jdk1.7.0_65/bin/java -Xmx20m -Dflume.root.logger=INFO,console -cp '/home/hadoop/apache-flume-1.6.0-bin/conf:/home/hadoop/apache-flume-1.6.0-bin/lib/*:/home/hadoop/hadoop-2.4.1/etc/hadoop:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/activation-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/avro-1.7.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-collections-3.2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-configuration-1.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-digester-1.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-el-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-httpclient-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-math3-3.1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/commons-net-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/hadoop-annotations-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/hadoop-auth-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/httpclient-4.2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/httpcore-4.2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-jaxrs-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jackson-xc-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jasper-compiler-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jasper-runtime-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/java-xmlbuilder-0.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jaxb-api-2.2.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-json-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jets3t-0.9.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jettison-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsch-0.1.42.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsp-api-2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/junit-4.8.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/mockito-all-1.8.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/paranamer-2.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/snappy-java-1.0.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/stax-api-1.0-2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/xmlenc-0.52.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib/zookeeper-3.4.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-common-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/hadoop-nfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/common/jdiff:/home/hadoop/hadoop-2.4.1/share/hadoop/common/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/common/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/common/templates:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-el-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jasper-runtime-5.5.23.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jsp-api-2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/hadoop-hdfs-nfs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/jdiff:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/templates:/home/hadoop/hadoop-2.4.1/share/hadoop/hdfs/webapps:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/activation-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/aopalliance-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-cli-1.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-codec-1.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-collections-3.2.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-httpclient-3.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-lang-2.6.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/commons-logging-1.1.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guava-11.0.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guice-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-jaxrs-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jackson-xc-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/javax.inject-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jaxb-api-2.2.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jaxb-impl-2.2.3-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-client-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-guice-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-json-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jettison-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jetty-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jetty-util-6.1.26.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jline-0.9.94.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/jsr305-1.3.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/leveldbjni-all-1.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/servlet-api-2.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/stax-api-1.0-2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib/zookeeper-3.4.5.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-api-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-client-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-applicationhistoryservice-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-resourcemanager-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-tests-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/sources:/home/hadoop/hadoop-2.4.1/share/hadoop/yarn/test:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/asm-3.2.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/commons-io-2.4.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/guice-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/hadoop-annotations-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/hamcrest-core-1.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jackson-core-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.8.8.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/javax.inject-1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/junit-4.10.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib/xz-1.0.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.4.1-tests.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.4.1.jar:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/lib-examples:/home/hadoop/hadoop-2.4.1/share/hadoop/mapreduce/sources:/home/hadoop/hadoop-2.4.1/contrib/capacity-scheduler/*.jar:/lib/*' -Djava.library.path=:/home/hadoop/hadoop-2.4.1/lib/native org.apache.flume.node.Application --conf-file conf/netcat-logger.conf --name a1
 8 2017-12-12 19:59:37,108 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider.start(PollingPropertiesFileConfigurationProvider.java:61)] Configuration provider starting
 9 2017-12-12 19:59:37,130 (conf-file-poller-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider$FileWatcherRunnable.run(PollingPropertiesFileConfigurationProvider.java:133)] Reloading configuration file:conf/netcat-logger.conf
10 2017-12-12 19:59:37,142 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:931)] Added sinks: k1 Agent: a1
11 2017-12-12 19:59:37,143 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1017)] Processing:k1
12 2017-12-12 19:59:37,143 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration$AgentConfiguration.addProperty(FlumeConfiguration.java:1017)] Processing:k1
13 2017-12-12 19:59:37,157 (conf-file-poller-0) [INFO - org.apache.flume.conf.FlumeConfiguration.validateConfiguration(FlumeConfiguration.java:141)] Post-validation flume configuration contains configuration for agents: [a1]
14 2017-12-12 19:59:37,158 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:145)] Creating channels
15 2017-12-12 19:59:37,166 (conf-file-poller-0) [INFO - org.apache.flume.channel.DefaultChannelFactory.create(DefaultChannelFactory.java:42)] Creating instance of channel c1 type memory
16 2017-12-12 19:59:37,172 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.loadChannels(AbstractConfigurationProvider.java:200)] Created channel c1
17 2017-12-12 19:59:37,174 (conf-file-poller-0) [INFO - org.apache.flume.source.DefaultSourceFactory.create(DefaultSourceFactory.java:41)] Creating instance of source r1, type netcat
18 2017-12-12 19:59:37,189 (conf-file-poller-0) [INFO - org.apache.flume.sink.DefaultSinkFactory.create(DefaultSinkFactory.java:42)] Creating instance of sink: k1, type: logger
19 2017-12-12 19:59:37,192 (conf-file-poller-0) [INFO - org.apache.flume.node.AbstractConfigurationProvider.getConfiguration(AbstractConfigurationProvider.java:114)] Channel c1 connected to [r1, k1]
20 2017-12-12 19:59:37,200 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:138)] Starting new configuration:{ sourceRunners:{r1=EventDrivenSourceRunner: { source:org.apache.flume.source.NetcatSource{name:r1,state:IDLE} }} sinkRunners:{k1=SinkRunner: { policy:org.apache.flume.sink.DefaultSinkProcessor@1ce79b8 counterGroup:{ name:null counters:{} } }} channels:{c1=org.apache.flume.channel.MemoryChannel{name: c1}} }
21 2017-12-12 19:59:37,210 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:145)] Starting Channel c1
22 2017-12-12 19:59:37,371 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.register(MonitoredCounterGroup.java:120)] Monitored counter group for type: CHANNEL, name: c1: Successfully registered new MBean.
23 2017-12-12 19:59:37,372 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:96)] Component type: CHANNEL, name: c1 started
24 2017-12-12 19:59:37,376 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:173)] Starting Sink k1
25 2017-12-12 19:59:37,376 (conf-file-poller-0) [INFO - org.apache.flume.node.Application.startAllComponents(Application.java:184)] Starting Source r1
26 2017-12-12 19:59:37,377 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:150)] Source starting
27 2017-12-12 19:59:37,513 (lifecycleSupervisor-1-3) [INFO - org.apache.flume.source.NetcatSource.start(NetcatSource.java:164)] Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]

 然后可以向这个端口发送数据,就打印出来了,因为这里输出是在console的:

 相当于产生数据的源:[root@master hadoop]# telnetlocalhost 44444

[root@master hadoop]# telnet localhost 44444
bash: telnet: command not found

我的机器没有安装telnet ,所以先安装一下telnet ,如下所示

第一步:检测telnet-server的rpm包是否安装 ???
  [root@localhost ~]# rpm -qa telnet-server
  若无输入内容,则表示没有安装。出于安全考虑telnet-server.rpm是默认没有安装的,而telnet的客户端是标配。即下面的软件是默认安装的。

第二步:若未安装,则安装telnet-server:

   [root@localhost ~]#yum install telnet-server

第三步:3、检测telnet的rpm包是否安装 ???
  [root@localhost ~]# rpm -qa telnet
  telnet-0.17-47.el6_3.1.x86_64

第四步:若未安装,则安装telnet:

  [root@localhost ~]# yum install telnet

第五步:重新启动xinetd守护进程???

  由于telnet服务也是由xinetd守护的,所以安装完telnet-server,要启动telnet服务就必须重新启动xinetd
  [root@locahost ~]#service xinetd restart

完成以上步骤以后可以开始你的命令,如我的:

  [root@master hadoop]# telnet localhost 44444
  Trying ::1...
  telnet: connect to address ::1: Connection refused
  Trying 127.0.0.1...
  Connected to localhost.
  Escape character is '^]'.

解决完上面的错误以后就可以开始测试telnet数据源发送和flume的接受

测试,先要往agent采集监听的端口上发送数据,让agent有数据可采集随便在一个能跟agent节点联网的机器上:telnet localhost 44444

 

然后可以看到flume已经接受到了数据:

如何退出telnet呢???

  首先按ctrl+]退出到telnet > ,然后输入telnet> quit即可退出,记住,quit后面不要加;

 5:flume监视文件夹案例:

 1 监视文件夹
 2 
 3 
 4 第一步:
 5 首先 在flume的conf的目录下创建文件名称为:vim spool-logger.conf的文件。
 6 将下面的内容复制到这个文件里面。
 7 
 8 # Name the components on this agent
 9 a1.sources = r1
10 a1.sinks = k1
11 a1.channels = c1
12 
13 # Describe/configure the source
14 #监听目录,spoolDir指定目录, fileHeader要不要给文件夹前坠名
15 a1.sources.r1.type = spooldir
16 a1.sources.r1.spoolDir = /home/hadoop/flumespool
17 a1.sources.r1.fileHeader = true
18 
19 # Describe the sink
20 a1.sinks.k1.type = logger
21 
22 # Use a channel which buffers events in memory
23 a1.channels.c1.type = memory
24 a1.channels.c1.capacity = 1000
25 a1.channels.c1.transactionCapacity = 100
26 
27 # Bind the source and sink to the channel
28 a1.sources.r1.channels = c1
29 a1.sinks.k1.channel = c1
30 
31 第二步:根据a1.sources.r1.spoolDir = /home/hadoop/flumespool配置的文件路径,创建相应的目录。必须先创建对应的目录,不然报错。java.lang.IllegalStateException: Directory does not exist: /home/hadoop/flumespool
32 [root@master conf]# mkdir  /home/hadoop/flumespool
33 
34 第三步:启动命令:  
35 bin/flume-ng agent -c ./conf -f ./conf/spool-logger.conf -n a1 -Dflume.root.logger=INFO,console
36 
37 第四步:测试: 
38 往/home/hadoop/flumeSpool放文件(mv ././xxxFile /home/hadoop/flumeSpool),但是不要在里面生成文件

6:采集目录到HDFS案例:

(1)采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去
(2)根据需求,首先定义以下3大要素
  a):采集源,即source——监控文件目录 :  spooldir
  b):下沉目标,即sink——HDFS文件系统  :  hdfs sink
  c):source和sink之间的传递通道——channel,可用file channel 也可以用内存channel
(3):
Channel参数解释:

  capacity:默认该通道中最大的可以存储的event数量;

  trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量;

  keep-alive:event添加到通道中或者移出的允许时间;

配置文件编写:

 1 #定义三大组件的名称
 2 agent1.sources = source1
 3 agent1.sinks = sink1
 4 agent1.channels = channel1
 5 
 6 # 配置source组件
 7 agent1.sources.source1.type = spooldir
 8 agent1.sources.source1.spoolDir = /home/hadoop/logs/
 9 agent1.sources.source1.fileHeader = false
10 
11 #配置拦截器
12 agent1.sources.source1.interceptors = i1
13 agent1.sources.source1.interceptors.i1.type = host
14 agent1.sources.source1.interceptors.i1.hostHeader = hostname
15 
16 # 配置sink组件
17 agent1.sinks.sink1.type = hdfs
18 agent1.sinks.sink1.hdfs.path =hdfs://master:9000/weblog/flume-collection/%y-%m-%d/%H-%M
19 agent1.sinks.sink1.hdfs.filePrefix = access_log
20 agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
21 agent1.sinks.sink1.hdfs.batchSize= 100
22 agent1.sinks.sink1.hdfs.fileType = DataStream
23 agent1.sinks.sink1.hdfs.writeFormat =Text
24 agent1.sinks.sink1.hdfs.rollSize = 102400
25 agent1.sinks.sink1.hdfs.rollCount = 1000000
26 agent1.sinks.sink1.hdfs.rollInterval = 60
27 #agent1.sinks.sink1.hdfs.round = true
28 #agent1.sinks.sink1.hdfs.roundValue = 10
29 #agent1.sinks.sink1.hdfs.roundUnit = minute
30 agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
31 # Use a channel which buffers events in memory
32 agent1.channels.channel1.type = memory
33 agent1.channels.channel1.keep-alive = 120
34 agent1.channels.channel1.capacity = 500000
35 agent1.channels.channel1.transactionCapacity = 600
36 
37 # Bind the source and sink to the channel
38 agent1.sources.source1.channels = channel1
39 agent1.sinks.sink1.channel = channel1

 7:采集文件到HDFS案例:

(1):采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs

(2):根据需求,首先定义以下3大要素

  采集源,即source——监控文件内容更新 :  exec  ‘tail -F file’

  下沉目标,即sink——HDFS文件系统  :  hdfs sink

  Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel

配置文件编写:

 1 agent1.sources = source1
 2 agent1.sinks = sink1
 3 agent1.channels = channel1
 4 
 5 # Describe/configure tail -F source1
 6 agent1.sources.source1.type = exec
 7 agent1.sources.source1.command = tail -F /home/hadoop/logs/access_log
 8 agent1.sources.source1.channels = channel1
 9 
10 #configure host for source
11 agent1.sources.source1.interceptors = i1
12 agent1.sources.source1.interceptors.i1.type = host
13 agent1.sources.source1.interceptors.i1.hostHeader = hostname
14 
15 # Describe sink1
16 agent1.sinks.sink1.type = hdfs
17 #a1.sinks.k1.channel = c1
18 agent1.sinks.sink1.hdfs.path =hdfs://master:9000/weblog/flume-collection/%y-%m-%d/%H-%M
19 agent1.sinks.sink1.hdfs.filePrefix = access_log
20 agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
21 agent1.sinks.sink1.hdfs.batchSize= 100
22 agent1.sinks.sink1.hdfs.fileType = DataStream
23 agent1.sinks.sink1.hdfs.writeFormat =Text
24 agent1.sinks.sink1.hdfs.rollSize = 102400
25 agent1.sinks.sink1.hdfs.rollCount = 1000000
26 agent1.sinks.sink1.hdfs.rollInterval = 60
27 agent1.sinks.sink1.hdfs.round = true
28 agent1.sinks.sink1.hdfs.roundValue = 10
29 agent1.sinks.sink1.hdfs.roundUnit = minute
30 agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
31 
32 # Use a channel which buffers events in memory
33 agent1.channels.channel1.type = memory
34 agent1.channels.channel1.keep-alive = 120
35 agent1.channels.channel1.capacity = 500000
36 agent1.channels.channel1.transactionCapacity = 600
37 
38 # Bind the source and sink to the channel
39 agent1.sources.source1.channels = channel1
40 agent1.sinks.sink1.channel = channel1

 待续......

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
9天前
|
存储 运维 负载均衡
构建高可用性GraphRAG系统:分布式部署与容错机制
【10月更文挑战第28天】作为一名数据科学家和系统架构师,我在构建和维护大规模分布式系统方面有着丰富的经验。最近,我负责了一个基于GraphRAG(Graph Retrieval-Augmented Generation)模型的项目,该模型用于构建一个高可用性的问答系统。在这个过程中,我深刻体会到分布式部署和容错机制的重要性。本文将详细介绍如何在生产环境中构建一个高可用性的GraphRAG系统,包括分布式部署方案、负载均衡、故障检测与恢复机制等方面的内容。
55 4
构建高可用性GraphRAG系统:分布式部署与容错机制
|
28天前
|
消息中间件 中间件 数据库
NServiceBus:打造企业级服务总线的利器——深度解析这一面向消息中间件如何革新分布式应用开发与提升系统可靠性
【10月更文挑战第9天】NServiceBus 是一个面向消息的中间件,专为构建分布式应用程序设计,特别适用于企业级服务总线(ESB)。它通过消息队列实现服务间的解耦,提高系统的可扩展性和容错性。在 .NET 生态中,NServiceBus 提供了强大的功能,支持多种传输方式如 RabbitMQ 和 Azure Service Bus。通过异步消息传递模式,各组件可以独立运作,即使某部分出现故障也不会影响整体系统。 示例代码展示了如何使用 NServiceBus 发送和接收消息,简化了系统的设计和维护。
43 3
|
1月前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现
消息队列系统中的确认机制在分布式系统中如何实现
|
1月前
|
消息中间件 存储 监控
【10月更文挑战第2天】消息队列系统中的确认机制在分布式系统中如何实现
【10月更文挑战第2天】消息队列系统中的确认机制在分布式系统中如何实现
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
42 2
|
1月前
|
存储 开发框架 .NET
C#语言如何搭建分布式文件存储系统
C#语言如何搭建分布式文件存储系统
66 2
|
1月前
|
存储 数据采集 分布式计算
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
Hadoop-17 Flume 介绍与环境配置 实机云服务器测试 分布式日志信息收集 海量数据 实时采集引擎 Source Channel Sink 串行复制负载均衡
41 1
|
24天前
|
消息中间件 存储 监控
消息队列系统中的确认机制在分布式系统中如何实现?
消息队列系统中的确认机制在分布式系统中如何实现?
|
1月前
|
存储 分布式计算 监控
C# 创建一个分布式文件存储系统需要怎么设计??
C# 创建一个分布式文件存储系统需要怎么设计??
29 0
|
25天前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
下一篇
无影云桌面