利用ASK/OOK 发射模块,实现信号重放

简介: 本文以打开无线控制的电动车库卷帘门为目标,深入研究了ASK/OOK的编/解码,并用树莓派+五元钱的ASK/OOK 发射模块 背景 车库装了电动卷帘门,为了了解其安全性,也是为了能自主控制,研究了下其遥控原理。

本文以打开无线控制的电动车库卷帘门为目标,深入研究了ASK/OOK的编/解码,并用树莓派+五元钱的ASK/OOK 发射模块

背景

车库装了电动卷帘门,为了了解其安全性,也是为了能自主控制,研究了下其遥控原理。其实在这个过程中,我测试了家里几乎所有的无电线遥控器,包括电动窗帘、投影幕布、电动衣架、车钥匙。除了车钥匙,其它都是类似的,即ASK/OOK编码。

ASK,简单的理解,就是调幅,用不同的幅度来代表不同的信息。OOK是ASK的特例,因为只有0和1要表示,可以用有载波来代表1,无载波来代表0。但实际上并不是这么直接,通常会加上脉宽调制(PWM)以提高抗干扰能力。

用HackRF确定可行性

据说有的车库门是滚动码的(编码是变化的),我们可以先用HackRF做个简单的重放攻击测试。

录制2秒的信号并重放:

hackrf_transfer -f 433920000 -s 2000000 -a 1 -r capture.raw -n 4000000 -g 40 -l 16
hackrf_transfer -f 433920000 -s 2000000 -a 1 -t capture.raw -x 40

部分运行提示:

call hackrf_set_sample_rate(2000000 Hz/2.000 MHz)
call hackrf_set_hw_sync_mode(0)
call hackrf_set_freq(433920000 Hz/433.920 MHz)
call hackrf_set_amp_enable(1)
samples_to_xfer 4000000/4Mio
Stop with Ctrl-C
 3.9 MiB / 1.000 sec =  3.9 MiB/second
 3.9 MiB / 1.000 sec =  3.9 MiB/second
 0.3 MiB / 1.000 sec =  0.3 MiB/second
Exiting... hackrf_is_streaming() result: streaming terminated (-1004)

实测用录制的信号是可以控制的(如果不行,注意调整HackRF放大器的增益)。但这个没多大技术含量,而且成本高,数据量也大。我们的目标是解码后再重新编码/重放。

用GNU Radio录制信号

用GNU Radio搭一个简单的接收框图,一方面将接收信号保存到文件,另一方面将信号以瀑布图显示作为实时反馈。因为遥控信号是433.92MHz,中心频率设在这个附近都可以;采样率2M就够了。

图1:gnuradio-companion 连接框图

下图是运行时的瀑布图,其中按了5次遥控器。

图2:gnuradio-companion 运行时的瀑布图

用 Inspectrum 手动解码

用apt-get安装inspectrum,或下载最新的Inspectrum代码,按照文档自行编译。试过Debian和Mac下都没问题(Mac下用MacPorts要安装一堆依赖)。编译就不多说了,下面是解码的主要步骤:

1. 用Inspectrum打开前面录制的文件,设置采样率为录制时的采样率(2M);

2. 水平拖动,找到有信号的区域;

3. 在原始信号上右键,Add derived plot => Add sample plot;

4. 此时原始信号上会出现两条水平线,用鼠标拖动,调节中心频率的位置和宽度;

5. 在原始信号上右键,Add derived plot => Add amplitude plot;

6. 在Amplitude plot上右键,Add derived plot => Add threshold plot;

7. 勾选”Enable cursors”,此时会出现两条竖线;

8. Zoom放大信号图,移动两条竖线,使其宽度包含一个符号。注意跳过前导的高低电平(start1, start0)。数据通常是脉宽编码的,一对高低电平的组合代表一个bit:高电平较宽的代表1,低电平较宽的代表0。从图中应该能看出这个规律。

9. 改变符号数,使其包含整个信号区域(图中是65个符号,这相当于完整的key),并调节首尾对齐(结束时通常有较长的低电平),这时可以得到符号的速率,即波特率(对OOK,其实等同于比特率)。

图3:用Inspectrum解码的步骤

最后,在Amplitude plot或Threshold plot上分别点右键,Extract symbols (to stdout),可以得到解码的数据。其中前者相当于模拟信号,简单理解:正数代表1,负数代表0;后者才是我们想要的bit流。

图4:用Inspectrum解码的结果

为确认解码正确,可以再选一段信号区域,做同样的操作,看结果是否一致。毕竟ASK抗干扰不强,有时候可能会差一两个bit。通常,按一下遥控器,同样的数据会重复发送几次。

遥控信号编码分析

根据前面的解码,以及对更多遥控器的分析,可以归纳出一个模型。一个ASK信号包含如下部分(参数):

start1: 起始的高电平时间长度;

start0: 起始的低电平时间长度;

stop0: 结束的低电平时间长度;

period: 每个bit的周期,在PWM编码中,每个bit都对应一对高/低电平,而且总是先高后低;

duty: 占空比,比如占空比是75%,则意味着一个周期内如果75%左右是高电平,则代表1; 而75%左右是低电平则代表0;

bits: 实际的bit流。

这里的占空比肯定是大于50%的,通常在75%左右比较合适,这样既能拉开(每个周期内)两种电平的比例差,减少接收端的误判;又能保证接收时能采样到两种电平,也是为了减少误码。试想对于99%的占空比,1%周期的电平很可能被接收端采样不到,导致采样到199%(甚至更长)周期的同一种电平,这样解码时就会出错。

发射模块

最初,我是想用GNU Radio做ASK/OOK编码并发射的。万能的HackRF和SDR按说能搞定这个小Case。

研究了下,发现这并不是一件容易的事。需要使用很多的模块。这也许是一个很好的GNU Radio的练习题。但我还是先看下有没有更简单的办法。

然后口水了一下TI的EZ430-Chronos手表,找了下“廉价”的RFcat,发现并不容易买到。最后在万能的假货宝发现了真正廉价的东东:只要5元!(你买不了吃亏,买不了上当。。)

这个模块很简单,就是把输入的信号以433/315M的载波调制/发射出去。DATA为高电平,就按高电平调幅输出(请注意,这里调制的是电平,并不是数据。也就是说,数据”1″对应多长时间的高电平,多长时间的低电平,这个模块都不管的——这些是编码模块要处理的事)。

图5:ASK/OOK 发射模块

用Python编码

为了代码的模块化,也是为了减少发射时的计算量,我们采取先编码再发送的方案。根据前面建立的ASK信号的模型,将这个信号编码为高低电平交替的波形,并用一个数组表示,数组中每个元素存储高低电平切换时对应的时间戳。波形总是以高电平开始。

起始/结束电平的时长、占空比这些参数理论上并不需要严格准确,但这取决于接收端的宽容度,所以我们还是尽量忠实于原信号。

下面是核心的代码片断,其中ts是时间戳数组。

    def encodePWM(self, ts):
        t = 0
        ts.append(t)
        t += self.start1
        ts.append(t)
        t += self.start0
        ts.append(t)
        for i in range(0, self.bits.len):
            w = self.duty if self.bits[i] else 1 - self.duty
            ts.append(t + self.period * w)
            t += self.period
            ts.append(t)
        ts[-1] += self.stop0

用树莓派发送

发送工作就很简单了:将发射模块的DATA脚与树莓派的某个GPIO相连,电源也直接用树莓派的;

图6:树莓派与发射模块

然后根据时间戳交替翻转对应的GPIO就行了。

    def send(self, ts):
        b = 1
        t1 = time.time()
        GPIO.output(self.pin_tx, b)
        t1 -= ts[0]
        for t in ts[1:-1]:
            b = 1 - b
            wait = t1 + t - time.time()
            if wait > 0:
                time.sleep(wait)
            GPIO.output(self.pin_tx, b)
        wait = t1 + ts[-1] - time.time()
        if wait > 0:
            time.sleep(wait)

用sleep控制时间尽管有一定误差,脚本语言的运行也没那么快,但实测是够用的。下图是示波器上看到的DATA引脚的波形图(两个通道都连着DATA脚)。

图7:树莓派产生的待调制信号

为便于观察,我将编码周期设置为1ms,和示波器界面的1ms/div对应。图中测量的间距是2.78ms(预期是2.75ms),偏差是可接受的。

多种姿势打开车库门

把发射的装置放在车库内,并连上网络,就可以无需钥匙自主控制车库门的开/关了。

手机开关门

不需要自己写App,用ssh终端密钥登录并执行命令,就可以手机一键开/关门了,并且可以远程控制。

图8:手机上用ssh开关车库门

自动开关门

以指定手机作为钥匙,当持手机靠近车库时(其实是连上车库WiFi后),就自动开门。大致流程是:

远程执行路由器的 iwinfo 命令(如下)检测连接在上面的设备;

如果作为钥匙的手机的MAC在列表里,并且信号强度(SNR)超过设定值,就计为一个有效的连接。当连接数从0变为非0时,就自动开门。

如果钥匙手机的有效连接数降到0, 就自动关门。

ssh root@wireless-router 'iwinfo ra0 assoclist && iwinfo rai0 assoclist'

自动关门的好处是可以防止人走了忘了关门(俺家真的发生过)。

芝麻开门

理论上可以做到,但需要可靠的声纹识别。这个就算了。。

锁死车库门

把发射模块对应的GPIO设为高电平,由于发射模块信号强,距离近,接收端收到的总是1,导致用真的钥匙也开不了门。

结语

不用滚动码编码的车库门其实是毫无安全性可言的。不管是简单的原始信号重放、还是解码后再编码的重放都比较容易实现。但我们可以利用这种不安全为自己提供便利,更灵活地自主开/关门。另外,用发射模块发射高电平可以干扰钥匙的信号达到锁死车库门的效果。

但如果不是通过监听钥匙的信号,用暴力破解Key也并不是那么容易的。因为ASK编码除了需要数据吻合,载波频率相同,还需要数据编码速率,甚至起止电平的时长都要一致。

用廉价的硬件发射模块配合树莓派(或单片机)可以低成本地编码/发射ASK/OOK信号,简单易行。而HackRF加Inspectrum解码仅适合实验和调试用,实用价值不高。后续将会尝试ASK/OOK的自动解码。

相关文章
施密特触发电路的介绍
施密特触发电路是一种常见的电子电路,用于产生稳定的输出信号。它的工作原理是通过比较输入信号的电压与两个阈值电压的大小关系来实现的。本文将详细介绍施密特触发电路的原理、应用以及优缺点。 一、施密特触发电路的原理 施密特触发电路由两个比较器组成,每个比较器都有一个阈值电压。当输入信号的电压大于上限阈值电压时,输出为高电平;当输入信号的电压小于下限阈值电压时,输出为低电平。只有当输入信号的电压在两个阈值电压之间时,输出才会保持不变。 施密特触发电路的工作原理可以简单地描述为:当输入信号的电压超过上限阈值电压时,输出从低电平切换到高电平;当输入信号的电压低于下限阈值电压时,输出从高电平切换到低电平
197 0
使用信号集,验证可靠信号挨个排队响应和不可靠信号会丢失的特点
使用信号集,验证可靠信号挨个排队响应和不可靠信号会丢失的特点
|
6月前
|
NoSQL Linux 程序员
【linux进程信号(一)】信号的概念以及产生信号的方式
【linux进程信号(一)】信号的概念以及产生信号的方式
|
6月前
|
存储 Linux
【linux进程信号(二)】信号的保存,处理以及捕捉
【linux进程信号(二)】信号的保存,处理以及捕捉
|
算法
【信号去噪和正交采样】流水线过程的一部分,用于对L波段次级雷达中接收的信号进行降噪(Matlab代码实现)
【信号去噪和正交采样】流水线过程的一部分,用于对L波段次级雷达中接收的信号进行降噪(Matlab代码实现)
|
传感器 芯片
MCU实现对外部脉冲信号的计数功能
MCU实现对外部脉冲信号的计数功能
61 1
|
关系型数据库 RDS
MOSFET大信号工作及开关应用
MOSFET(金属氧化物半导体场效应晶体管)是一种常见的半导体器件,具有高输入阻抗、低输出阻抗和较高的开关速度,因此广泛应用于各种电子设备和电路中。
127 0
信号与系统概念题1、信号时移只改变信号的相位频谱,不改变信号的幅度频谱2、设两子系统的单位冲击响应分别为h1(t)和h2(t),则由其并联组成的复合系统的单位冲激响应 h(t)=h1(t)+h2(
信号与系统概念题1、信号时移只改变信号的相位频谱,不改变信号的幅度频谱2、设两子系统的单位冲击响应分别为h1(t)和h2(t),则由其并联组成的复合系统的单位冲激响应 h(t)=h1(t)+h2(
|
传感器 芯片
MCU如何实现对外部脉冲信号的计数功能?
MCU如何实现对外部脉冲信号的计数功能?
预处理信号——在测量中找到信号
预处理信号——在测量中找到信号
57 0