opencv安装指南

简介: opencv安装指南用包管理器安装比如ubuntu下是apt-get,mac下是brew。(windows下或许用nuget?)以ubuntu下为例。查看opencv相关的包aptitude search opencv执行安装发现有很多包。

opencv安装指南

用包管理器安装

比如ubuntu下是apt-get,mac下是brew。(windows下或许用nuget?)以ubuntu下为例。

查看opencv相关的包

aptitude search opencv

执行安装

发现有很多包。不妨安装绝大多数:

sudo apt-get install libopencv-*
sudo apt-get install opencv-data python-opencv

编译安装

为什么编译安装

opencv有些功能放在opencv_contrib中了,即便用包管理器安装了opencv_contrib,有些包还是不能用,一定要自行把opencvopencv_contrib一起编译。

下载源码

依然以ubuntu16.04为例。

opencv官网下载。或者用git:

mkdir -p ~/gitwhat      #自行建立的目录
cd ~/gitwhat
git clone https://github.com/opencv/opencv --depth=1          #depth表示只下载最新commit的代码,减少下载量。
git clone https://github.com/opencv/opencv_contrib --depth=1
cd opencv
vim compile.sh    #cmake编译参数很多,写到文件中方便些

编译脚本

compile.sh内容如下:

#!/bin/bash
set -x
set -e

rm -rf build
mkdir -p build
cd build

LOG="../cmake.log"
rm $LOG

exec &> >(tee -a "$LOG")

cmake \
-D CMAKE_BUILD_TYPE=Release \
-D CMAKE_INSTALL_PREFIX=/usr/local/opencv-git-master \
-D WITH_CUDA=OFF \
-D WITH_VTK=OFF \
-D WITH_MATLAB=OFF \
-D BUILD_DOCS=ON \
-D OPENCV_EXTRA_MODULES_PATH=/home/chris/work/gitwhat/opencv_contrib/modules \
-D PYTHON2_EXECUTABLE=/usr/bin/python \
-D PYTHON3_EXECUTABLE=/usr/bin/python3 \
-D PYTHON_INCLUDE_DIR=/usr/include/python2.7 \
-D PYTHON_INCLUDE_DIR2=/usr/include/x86_64-linux-gnu/python2.7 \
-D PYTHON_LIBRARY=/usr/lib/x86_64-linux-gnu/libpython2.7.so \
-D PYTHON2_NUMPY_INCLUDE_DIRS=/usr/lib/python2.7/dist-packages/numpy/core/include/ \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/usr/lib/python3.5/dist-packages/numpy/core/include/ \
..

make -j8

make doxygen # 可选,用来编译出documentation,存放在`<opencv_root>/build/doc/doxygen/html`

sudo make install #可选,强烈建议执行。

其中,CMAKE_INSTALL_PREFIX表示make install的安装路径,可修改;OPENCV_EXTRA_MODULES_PATHopencv_contrib项目下的modules目录,自行修改。

make install是把opencv和opencv_contrib进行安装到一个统一的目录,如果后续用opencv的C++接口那么当写CMakeLists.txt时需要这个安装路径;如果仅仅是python opencv调用 ,那么只需要找到cv2.so就可以用了,可以不make install

执行编译脚本、解决3rdparty下载

执行编译脚本:

chmod +x compile.sh
./compile.sh

发现往往卡在ippicv等第三方包的下载上(国内网络你懂得)。通过查看相关的.cmake文件,发现是从github上的opencv_3rdparty项目下载的,这些下载地址有些需要改掉,下载第三方包后根据.cmake文件内容,重新压缩、修改md5的hash值等。

这些下载的包放到<opencv_root>/.cache目录下,并按照固定的规则命名。

以下是细节:

手动下载ippicv包

查看/3rdparty/ippicv/ippicv.cmake
此文件是要下载指定commit的opencv_3rdparty包的URL地址,并给出了验证的md5sum值。

URL地址是有问题的,现在(2017.04.15)不能用raw.githutcontent.com开头形式的URL下载东西了。

换用这个地址:

https://codeload.github.com/opencv/opencv_3rdparty/zip/81a676001ca8075ada498583e4166079e5744668

其中url最后一部分是commit的id

这样下载完的是zip包,解压它并压缩为.tgz格式。算出它的md5sum值。重命名为md5sum-文件名的格式:

1469ff5ced054be500921d2d46278ef4-ippicv_linux_20151201.tgz

移动到/.cache/ippicv目录下

手动下载protobuf包

查看opencv_contrib/modules/dnn/cmake/OpenCVFindLibProtobuf.cmake
此文件是要下载指定版本的protobuf-cpp。我这里是3.1版本的。它下载地址是:
https://github.com/google/protobuf/releases/download/v3.1.0/
这个地址会转到aws的地址,所以用迅雷下载吧。这个md5sum不用换。

或者下载地址换用这种形式:

https://codeload.github.com/google/protobuf/zip/a428e42072765993ff674fda72863c9f1aa2d268

其中URL最后的commit是protobuf-cpp-3.1对应的commit号。可以试试看。(试了,不行,因该是因为下载的不是protobuf-cpp吧)

xfeatures包

和上面的包的方法类似。只不过放到.cache目录下后,是把一个个的单个文件进行重命名,格式也是md5sum-文件名,记得对比.cmake文件中的hash值。

.cache目录结构

  .cache git:(master)  tree
.
├── ippicv
│   └── 1469ff5ced054be500921d2d46278ef4-ippicv_linux_20151201.tgz
├── protobuf
│   └── bd5e3eed635a8d32e2b99658633815ef-protobuf-cpp-3.1.0.tar.gz
├── tiny_dnn
│   └── adb1c512e09ca2c7a6faef36f9c53e59-v1.0.0a3.tar.gz
└── xfeatures2d
    ├── boostdesc
    │   ├── 0ae0675534aa318d9668f2a179c2a052-boostdesc_lbgm.i
    │   ├── 0ea90e7a8f3f7876d450e4149c97c74f-boostdesc_bgm.i
    │   ├── 202e1b3e9fec871b04da31f7f016679f-boostdesc_binboost_064.i
    │   ├── 232c966b13651bd0e46a1497b0852191-boostdesc_bgm_bi.i
    │   ├── 324426a24fa56ad9c5b8e3e0b3e5303e-boostdesc_bgm_hd.i
    │   ├── 98ea99d399965c03d555cef3ea502a0b-boostdesc_binboost_128.i
    │   └── e6dcfa9f647779eb1ce446a8d759b6ea-boostdesc_binboost_256.i
    └── vgg
        ├── 151805e03568c9f490a5e3a872777b75-vgg_generated_120.i
        ├── 7126a5d9a8884ebca5aea5d63d677225-vgg_generated_64.i
        ├── 7cd47228edec52b6d82f46511af325c5-vgg_generated_80.i
        └── e8d0dcd54d1bcfdc29203d011a797179-vgg_generated_48.i

6 directories, 14 files

编译后的设定-环境变量

新编译出来的cv2.so位于/usr/local/opencv-git-master/lib/cv2.so

要使用新编译出来的cv2.so,删除apt的python-opencv包,或者把cv2.so放到PYTHONPATH中。

sudo apt-get remove python-opencv
sudo ln -sf /usr/local/opencv-git-master/lib/python2.7/dist-packages/cv2.so /usr/lib/python2.7

mac下的compile.sh脚本

mac下装caffe时候发现,系统自带的python不靠谱用不了啊,brew的也不怎么能用,所幸有anaconda在。装好anaconda后再brew从源码装boost和boost-python,再caffe。。

对应的opencv编译脚本,改掉python相关的几个路径:

#!/bin/bash
set -x
set -e

LOG="../cmake.log"
touch $LOG
rm $LOG

exec &> >(tee -a "$LOG")

BUILD_ROOT=build

if [ -d $BUILD_ROOT ]; then
    rm -rf $BUILD_ROOT
fi
mkdir -p $BUILD_ROOT
cd $BUILD_ROOT


ANACONDA=/Users/tusdk/anaconda

cmake \
    -D CMAKE_BUILD_TYPE=Release \
    -D CMAKE_INSTALL_PREFIX=/usr/local/opencv-git-master \
    -D WITH_CUDA=OFF \
    -D WITH_VTK=OFF \
    -D WITH_MATLAB=OFF \
    -D BUILD_DOCS=ON \
    -D OPENCV_EXTRA_MODULES_PATH=/Users/tusdk/work/opencv_contrib/modules \
    -D PYTHON2_EXECUTABLE=${ANACONDA}/bin/python \
    -D PYTHON_INCLUDE_DIR=${ANACONDA}/include/python2.7 \
    -D PYTHON_LIBRARY=${ANACONDA}/lib/libpython2.7.dylib \
    -D PYTHON2_NUMPY_INCLUDE_DIRS=${ANACONDA}/lib/python2.7/site-packages/numpy/core/include/ \
    ..

make -j8

make doxygen # 可选,用来编译出documentation,存放在`<opencv_root>/build/doc/doxygen/html`

sudo make install

其他问题

opencv_world.so

编译opencv_contrib时候发现没有编译出opencv_world.so

需要cmake开启开关:

···
-D BUILD_opencv_world=ON
···

缺点:只生成一个opencv_world.so,其他的.so都没有!

编译opencv_contrib时报错Unknown CMake command ‘ocv_download’

问题出现原因:opencv_contrib里面用到的ocv_download函数没有找到对应的定义。很可能是:你的opencv是下载的.zip/.rar压缩包并且版本比较老(比如opencv-2.4.13.zip),而老版本的opencv中没有定义ocv_download函数

因为opencv_contrib模块只提供了opencv3的支持,只能放弃opencv2版本,或者手动去修改各种头文件和函数接口(暂时不考虑

重新编译时,再次需要下载ippicv等模型文件

建议搜索cmake目录下所有文件中的"file(REMOVE",注释掉对应的行。出现本状况的原因是opencv的cmake代码中,执行完下载和解压后就执行删除,好不容易下载好的东西就删除。。不理解这种做法。。

目录
相关文章
|
4月前
|
Ubuntu 应用服务中间件 nginx
Ubuntu安装笔记(三):ffmpeg(3.2.16)源码编译opencv(3.4.0)
本文是关于Ubuntu系统中使用ffmpeg 3.2.16源码编译OpenCV 3.4.0的安装笔记,包括安装ffmpeg、编译OpenCV、卸载OpenCV以及常见报错处理。
308 2
Ubuntu安装笔记(三):ffmpeg(3.2.16)源码编译opencv(3.4.0)
|
4月前
|
Ubuntu Linux C语言
Ubuntu安装笔记(二):ubuntu18.04编译安装opencv 3.4.0 opencv_contrib3.4.0
本文介绍了在Ubuntu 18.04系统上编译安装OpenCV 3.4.0及其扩展包opencv_contrib 3.4.0的详细步骤,包括下载源码、安装依赖、配置CMake和编译安装,以及常见问题的解决方法。
521 1
Ubuntu安装笔记(二):ubuntu18.04编译安装opencv 3.4.0 opencv_contrib3.4.0
|
4月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
6546 3
|
4月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
257 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
yolov5项目如何安装pycocotools和opencv-python?
本文提供了解决yolov5项目中安装pycocotools和opencv-python包失败的两种方法:手动安装或使用国内镜像源进行安装。
yolov5项目如何安装pycocotools和opencv-python?
|
6月前
|
前端开发 计算机视觉
Building wheel for opencv-python (pyproject.toml) ,安装命令增加 --verbose 参数
Building wheel for opencv-python (pyproject.toml) ,安装命令增加 --verbose 参数
301 2
|
8月前
|
机器学习/深度学习 算法 Java
计算机视觉——opencv快速入门(一) opencv的介绍与安装
OpenCV是开源计算机视觉库,支持C++, Python, Java等,用于图像处理、视频分析等。建议使用较早版本如3.4.3,因高版本部分算法需付费。通过Anaconda创建Python虚拟环境来安装,选择合适的Python和OpenCV版本。激活环境后,用`pip`安装`opencv-python`。基本环境配置完成后,通过显示图像的Python代码测试安装是否成功。
计算机视觉——opencv快速入门(一) opencv的介绍与安装
|
8月前
|
并行计算 Ubuntu 计算机视觉
【边缘智能】Jetson板卡上安装QT5与OpenCV集成
【边缘智能】Jetson板卡上安装QT5与OpenCV集成
202 0
|
9月前
|
算法 安全 机器人
最新版opencv4.9安装介绍,基本图像处理详解
最新版opencv4.9安装介绍,基本图像处理详解
423 0
|
9月前
|
开发工具 计算机视觉 C++
OpenCv、Vis Studio安装与配置
OpenCv、Vis Studio安装与配置
OpenCv、Vis Studio安装与配置

热门文章

最新文章