数据仓库专题(10)-文本事实和杂项维度

简介:

一、杂项维度

在维度建模的数据仓库中,有一种维度叫Junk Dimension,中文一般翻译为“杂项维度”。杂项维度是由操作系统中的指示符或者标志字段组合而成,一般不在一致性维度之列。

在操作系统中,我们定义好各种维度后,通常还会剩下一些在小范围内取离散值的指示符或者标志字段。例如:支付类型字段,包括现金和信用卡两种类型,在源系统中它们可能是维护在类型表中,也可能直接保存在交易表中。

一张事实表中可能会存在好几个类似的字段,如果作为事实存放在事实表中,会导致事实表占用空间过大;如果单独建立维度表,外键关联到事实表,会出现维度过多的情况;如果将这些字段删除,会有人不同意。

这 时,我们通常的解决方案就是建立杂项维度,将这些字段建立到一个维度表中,在事实表中只需保存一个外键。几个字段的不同取值组成一条记录,生成代理键,存 入维度表,并将该代理键保存入相应的事实表字段。建议不要直接使用所有的组合生成完整的杂项维度表,在抽取时遇到新的组合时生成相应记录即可。杂项维度的ETL过程比一般的维度略为复杂。

二、文本事实

在维度建模中,我们经常会遇到一些文本型的事实,它们通常是一些标识信息、属性或者描述信息。这些字段看似属于事实表中的事实,但是它们又不是键、度量事实或者退化维度。

通常,不太建议将这些文本事实字段建立到事实表中,而应该在维度表中给它们找到适当的位置。

当遇到文本型的事实时,我们首先要考虑的应该是这个事实是否属于某个维度表。例如,客户类型标识出每个客户的一个值,应该属于客户维度表。

如果事实不属于已存在的任何一个维度表,我们可以为它们建立单独的维度表或者整合成杂项维度表(Junk Dimension)。建立单独的小维度表是比较容易的方式,但是为增加事实表中的外键个数。这样的维度比较多时,我们可以建立杂项维度表。下面列举了不同情况的一些说明。

1.如果事实表中的维度外键已经很多,如20个左右,那么最好建立杂项维度表。

2.理想情况下,杂项维度的记录数不要超过10万条。如果建立了杂项维度记录过多,可以考虑拆分成独立的维度或者其他杂项维度。

3.从业务规则角度讲,杂项维度中的不同属性应该是不相关的,以免引起误解。如果相关的话,最好不要建立成杂项维度。

另外,如果这个文本是详细的、自由格式的描述信息,并且较少访问的话,把它们建立成事实维度是一个很好的选择。

目录
相关文章
|
存储 数据采集 分布式计算
一篇文章搞懂数据仓库:四种常见数据模型(维度模型、范式模型等)
一篇文章搞懂数据仓库:四种常见数据模型(维度模型、范式模型等)
一篇文章搞懂数据仓库:四种常见数据模型(维度模型、范式模型等)
|
存储 SQL 大数据
一篇文章搞懂数据仓库:三种事实表(设计原则,设计方法、对比)
一篇文章搞懂数据仓库:三种事实表(设计原则,设计方法、对比)
一篇文章搞懂数据仓库:三种事实表(设计原则,设计方法、对比)
|
6月前
|
存储 运维 监控
云原生数据仓库使用问题之怎么创建维度表
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
存储 数据挖掘 关系型数据库
数仓学习---6、数据仓库概述、 数据仓库建模概述、维度建模理论之事实表、维度建模理论之维度表
数仓学习---6、数据仓库概述、 数据仓库建模概述、维度建模理论之事实表、维度建模理论之维度表
|
8月前
|
数据挖掘 数据库
离线数仓6.0--- 数据仓库 ER模型-范式理论,维度模型、维度建模理论之事实表、维度建模理论之维度表
离线数仓6.0--- 数据仓库 ER模型-范式理论,维度模型、维度建模理论之事实表、维度建模理论之维度表
317 0
|
SQL 数据挖掘 HIVE
Hive数据仓库维度分析
Hive数据仓库维度分析
172 0
|
存储 BI 数据库
数据仓库(4)基于维度建模的数仓KimBall架构
基于维度建模的KimBall架构,将数据仓库划分为4个不同的部分。分别是操作型源系统、ETL系统、数据展现和商业智能应用,如下图。
313 1
|
大数据 数据管理 数据库
数据仓库(3)数仓建模之星型模型与维度建模
维度建模是一种将数据结构化的逻辑设计方法,也是一种广泛应用的数仓建模方式,它将客观世界划分为度量和上下文。度量是常常是以数值形式出现,事实周围有上下文包围着,这种上下文被直观地分成独立的逻辑块,称之为维度。它与实体-关系建模有很大的区别,实体-关系建模是面向应用,遵循第三范式,以消除数据冗余为目标的设计技术。维度建模是面向分析,为了提高查询性能可以增加数据冗余,反规范化的设计技术。
482 1
|
存储 SQL 数据挖掘
数据仓库-维度建模不是万金油
写在前面:最近有些抵触写东西,总感觉自己没有清晰的表达思路和专业的知识体系,写的东西都是更偏向个人经验的一家之谈;之前总想着把文章结构做好,图片做好,表达做好,这样能更容易让大家理解,可以让更多的人接受所要表达的观点;但是,这样写太痛苦了,似乎是为了达到某种结果而刻意为之。。。最终还是回归表达的本质,传播思路和想法,把这个说清楚就可以了,不管是三言两语还是长篇大论,让看到的人能知道有这么一种观点和
144 0
|
SQL 存储 HIVE
数据仓库系列--维度表技术
数据仓库系列--维度表技术
159 0

热门文章

最新文章