数据仓库专题(2)-Kimball维度建模四步骤

简介:

一、前言

  四步过程维度建模由Kimball提出,可以做为业务梳理、数据梳理后进行多维数据模型设计的指导流程,但是不能作为数据仓库系统建设的指导流程。本文就相关流程及核心问题进行解读。

二、数据仓库建设流程

  以下流程是根据业务系统、组织结构、团队结构现状设定的数据仓库系统建设流程,适合系统结构复杂,团队协作复杂,人员结构复杂的情况,并且数据仓库建设团队和业务系统建设团队不同的情况。具体流程如下图所示:

 

图1 数据仓库系统建设流程

 

三、四步维度建模

  Kimball四步建模流程适合上述数据仓库系统建设流程中模型设计环节,重点解决数据粒度、维度设计和事实表设计问题。四步建模流程如下图所示:

三、流程解读

  3.1 如何确定粒度

    最细粒度和聚合粒度之争?留给大家来辩驳吧,大家可以在评论中发表各自的观点。

  3.1 如何标识维度

    标识维度解决的是业务人员如何描述来自业务过程的数据,维度用来表示“谁、什么、何时、何处、为何、如何”的问题。以竞价广告检索流程而言就是客户通过什么渠道、什么样的客户端(OS、IP)、检索了什么样的内容、请求最终有谁受理等。

  3.2 如何标识事实

    标识事实其实是在确定业务过程的度量指标,指标何来?哪些指标必须保留,那些指标必须删除,待定指标如何处理?必须综合考虑业务用户需求和现实数据的实际情况。事实表的设计完全依赖于物理活动,不受可能产生的最终报表的影响,报表只是事实表设计的参考视角。

四、未完待续

  数据仓库专题作为项目笔记,持续更新中,敬请关注。

目录
相关文章
|
2月前
|
安全 关系型数据库 数据库
数据仓库是什么,一文读懂数据仓库设计步骤
数据仓库是企业整合、存储和分析历史数据的核心工具,支持决策与趋势预测。设计需经历明确业务需求、梳理数据源、概念建模、逻辑设计、物理实现及测试维护等步骤。通过合理规划结构、安全机制与数据集成(如使用FineDataLink),可有效提升数据质量与分析效率,助力企业发挥数据价值。
|
9月前
|
存储 数据采集 大数据
数据仓库建模规范思考
本文介绍了数据仓库建模规范,包括模型分层、设计、数据类型、命名及接口开发等方面的详细规定。通过规范化分层逻辑、高内聚松耦合的设计、明确的命名规范和数据类型转换规则,提高数据仓库的可维护性、可扩展性和数据质量,为企业决策提供支持。
759 10
|
存储 数据挖掘 关系型数据库
数仓学习---6、数据仓库概述、 数据仓库建模概述、维度建模理论之事实表、维度建模理论之维度表
数仓学习---6、数据仓库概述、 数据仓库建模概述、维度建模理论之事实表、维度建模理论之维度表
|
存储 运维 监控
云原生数据仓库使用问题之怎么创建维度表
阿里云AnalyticDB提供了全面的数据导入、查询分析、数据管理、运维监控等功能,并通过扩展功能支持与AI平台集成、跨地域复制与联邦查询等高级应用场景,为企业构建实时、高效、可扩展的数据仓库解决方案。以下是对AnalyticDB产品使用合集的概述,包括数据导入、查询分析、数据管理、运维监控、扩展功能等方面。
|
存储 SQL 分布式计算
离线数仓(五)【数据仓库建模】(4)
离线数仓(五)【数据仓库建模】
|
SQL 存储 关系型数据库
离线数仓(五)【数据仓库建模】(1)
离线数仓(五)【数据仓库建模】
离线数仓(五)【数据仓库建模】(1)
|
存储 SQL JSON
离线数仓(五)【数据仓库建模】(2)
离线数仓(五)【数据仓库建模】
|
数据挖掘 数据库
离线数仓6.0--- 数据仓库 ER模型-范式理论,维度模型、维度建模理论之事实表、维度建模理论之维度表
离线数仓6.0--- 数据仓库 ER模型-范式理论,维度模型、维度建模理论之事实表、维度建模理论之维度表
516 0
|
存储 缓存 Cloud Native
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样
MPP架构数据仓库使用问题之ADB PG云原生版本的扩缩容性能怎么样

热门文章

最新文章