【Science】CMU机器学习系主任:八个关键标准判别深度学习任务成功与否

简介: AlphaGo战胜人类、机器人写作、人脸识别……越来越多的人工智能设备正在进入人们的生活,并从事流水化的工作。有人认为未来人类的工作将被机器学习所取代,人们面临失业的危险。Erik Brynjolfsson和Tom Mitchell从技术与经济学角度,来分析上述结论是否能站住脚。

目前,机器学习在医疗、金融、安防等领域应用广泛,并替代了一些流程化低级劳动,因此有人认为未来人类的工作将被机器学习所取代,人们面临失业的危险。

近日,《Science》发表了麻省理工学院数字经济倡导行动主任Erik Brynjolfsson和卡内基梅隆大学计算机科学学院机器学习系主任Tom Mitchell的文章,他们从机器学习和经济学角度分析了人类会不会“被失业”的问题。

引言:机器学习改变的太多了

在过去的几十年里,数字计算机已经改变了几乎所有经济领域的工作,现在的我们正处于一个更大、更快速变革的开端,这一切归功于机器学习的最新进展,它有能力加快自动化的步伐。

对机器学习的进展至关重要的是改进算法的组合,包括深度神经网络和相当快的计算机硬件。例如,Facebook基于短语的机器翻译模型,每天有超过45亿的语言翻译。图像识别的算法在ImageNet上造成了越来越低的错误率,使其从2010年的超过30%下降到今天的不到3%。同样,自2016年7月以来,语音识别方面错误了从8.4%降低到4.9%。

然而,机器学习是一个“通用技术”,就像蒸汽机和电力一样,它将产生大量的创新和功能。但对于具体的劳动力的影响和因此产生的更广泛的经济问题而言,我们还没有深刻的认识。现实也并不像我们有时所宣称的那样,人们面对即将到来的“失业”问题。

尽管机器学习的进步能力让人印象深刻,但它并不适用于所有任务,并且在在决策能力上也比人类弱的多。

八个关键标准来判别深度学习在任务中成功与否

1、能够学习函数,将定义明确的输入映射到明确输出

其中包括分类(例如,根据癌症发生的可能性给狗狗的图片做标记或标记医疗记录)和预测(例如,分析贷款申请来预测未来违约的可能性)。尽管机器学习可能学会预测与给定输入X相关的Y值,但这是一种学习的统计相关性,也许机器学习不会理解因果关系。

2、存在或者能够创建含有输入-输出对的大数据集

训练的例子越多,学习的准确度就越高。深度神经网络的显著特征之一是,它在许多领域的性能在一定数量的示例之后似乎并不具有渐近性。尤其重要的是,所有相关的输入特性都要在训练数据中获取。尽管原则上任何任意的函数都可以用深度神经网络表示,但是计算机很容易模仿和延续训练数据中存在的不需要的偏差,并忽略那些包含了它们不能观察到的变量的规则。通过对现有流程和客户交互进行监督,可以通过雇佣人员标记或创建全新的数据集,或者通过模拟相关的问题设置来创建数字数据。

3、能够提供明确反馈,具有明确的目标和指标的任务

当我们能够清晰地描述目标时,机器学习就能很好地工作,即使我们不能确定实现这些目标的最佳过程。尽管机器学习能模仿个体,但由于在获取个体的输入输出决策能力上的缺失,因此它可能不会形成最佳的全系统性能。因此,为性能定义了系统范围的度量标准,为深度学习系统提供了一个黄金标准。当训练数据按照这样的黄金标准进行标记时,深度学习尤其强大,从而定义了预期的目标。

4、摆脱对背景知识或常识的依赖,缩短甚至跳脱逻辑推理的长链

机器学习系统在学习数据中的经验关联方面非常强大,但是当任务需要依赖计算机未知的常识或背景知识的长推理链或复杂计划时,它的效率较低。 一般来说,机器学习在视频游戏中表现不错,这种游戏需要快速反应,并提供即时反馈,但在游戏中选择最佳动作取决于记忆先前事件的时间以及关于世界的未知背景知识 (例如,知道房间里新引入的物品可能在哪里找到)。 例外的是,围棋和象棋这样的游戏,因为这些非物理的游戏可以以非常精确的速度快速模拟,所以可以自动收集数百万个完全自我标记的训练样例。 但是,在大多数现实世界中,我们缺乏完美的模拟。

5、不需要详细解释决定是如何做出的

大型神经网络通过巧妙地调整数以亿计的数字权重来学习做出决定,这些数字权重互连了他们的人造神经元。 解释这种决定对人类的推理可能是困难的,因为深度神经网络通常不会使用与人类相同的中间抽象。 例如,虽然计算机可以诊断特定类型的癌症或肺炎,或者比专家医生更好,但与人类医生相比,他们解释为什么或如何提出诊断的能力较差。

6、具有容错性,不需要最佳解决方案,或者证明是正确的解决方案

几乎所有的机器学习算法都是从统计和概率上推导出他们的解决方案。 因此,很难将其训练到100%的准确度。 即使是最好的语音,物体识别和临床诊断计算机系统也会犯错(就像最好的人类一样)。 因此,容忍学习系统的错误是制约采用的重要标准。

7、学会的现象或函数/功能不要随时间发生快速的变化

一般来说,只有当未来测试例子的分布类似于训练样例的分布时,机器学习算法才能很好地工作。 如果这些分布随着时间而改变,则通常需要再培训,因此成功取决于相对于新培训数据获取率的变化率(例如,电子邮件垃圾邮件过滤器做得很好, 部分原因是与垃圾邮件发生变化的速度相比,新电子邮件的获得率the rate of acquisition较高)。

8、没有专门的灵巧性,身体技能或移动性要求

在处理非结构化环境和任务中的物理操作时,机器人与人类相比仍然笨拙。 这不是机器学习的缺点,而是机器人的一般物理机械操纵器的现有技术的结果。

六个非技术影响因素

除了上述标准外,还有许多非技术因素会影响到机器学习对劳动力的影响。 具体而言,机器学习对劳动力需求和工资的总体影响可以写成六个不同经济因素的函数:

1、劳力替代

2、价格弹性

3、互补性

4、收入弹性

5、劳动力供给弹性

6、业务流程重新设计

(经济学内容在此不做详细叙述)

最后,任何关于机器学习够和不能做什么,以及如何影响经济的讨论,都应该首先认识到两个基本的考虑因素:1、我们仍非常远离通用人工智能,机器也不能做全方位的任务。2、尽管技术创新通常能够影响和改善整体生活水平,但技术进步导致工资不平等表明,机器学习带来的经济效应可能具有极大的破坏性,既造造就了赢家,又造就了输家。

这就要求决策者、商业领袖、技术人员和研究人员相当重视这些问题。


原文发布时间为:2017-12-23

本文作者:张乾

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:【Science】CMU机器学习系主任:八个关键标准判别深度学习任务成功与否

相关文章
|
11月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
313 3
|
机器学习/深度学习 编解码 人工智能
人脸表情[七种表情]数据集(15500张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
本数据集包含15,500张已划分、已标注的人脸表情图像,覆盖惊讶、恐惧、厌恶、高兴、悲伤、愤怒和中性七类表情,适用于YOLO系列等深度学习模型的分类与检测任务。数据集结构清晰,分为训练集与测试集,支持多种标注格式转换,适用于人机交互、心理健康、驾驶监测等多个领域。
|
2月前
|
机器学习/深度学习 传感器 人工智能
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在人工智能和计算机视觉的快速发展中,火灾检测与火焰识别逐渐成为智慧城市、公共安全和智能监控的重要研究方向。一个高质量的数据集往往是推动相关研究的核心基础。本文将详细介绍一个火灾火焰识别数据集,该数据集共包含 2200 张图片,并已按照 训练集(train)、验证集(val)、测试集(test) 划分,同时配有对应的标注文件,方便研究者快速上手模型训练与评估。
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
2月前
|
机器学习/深度学习 人工智能 监控
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
2月前
|
机器学习/深度学习 编解码 人工智能
102类农业害虫数据集(20000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在现代农业发展中,病虫害监测与防治 始终是保障粮食安全和提高农作物产量的关键环节。传统的害虫识别主要依赖人工观察与统计,不仅效率低下,而且容易受到主观经验、环境条件等因素的影响,导致识别准确率不足。
|
5月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100类常见中药材,适用于YOLO系列及主流深度学习模型的图像分类与目标检测任务。数据已划分为训练集(8000张)与验证集(1200张),采用标准文件夹结构和简体中文命名,适配PyTorch、TensorFlow等框架,可用于中药识别系统开发、医学辅助诊断、移动端图像识别App研发及AI科研训练,具备较强的实用性与拓展性。
659 45
|
2月前
|
机器学习/深度学习 自动驾驶 算法
道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化与交通运输业的快速发展,道路基础设施的健康状况直接关系到出行安全与城市运行效率。长期高强度的使用、气候变化以及施工质量差异,都会导致道路表面出现裂缝、坑洼、井盖下沉及修补不良等缺陷。这些问题不仅影响驾驶舒适度,还可能引发交通事故,增加道路养护成本。
道路表面缺陷数据集(裂缝/井盖/坑洼)(6000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
机器学习/深度学习 人工智能 编解码
AI虫子种类识别数据集(近3000张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
本数据集包含近3000张已划分、标注的虫子图像,适用于YOLO系列模型的目标检测与分类任务。涵盖7类常见虫子,标注采用YOLO格式,结构清晰,适合农业智能化、小样本学习及边缘部署研究。数据来源多样,标注精准,助力AI虫害识别落地应用。
|
10月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
179 3