断篇-金融大数据最佳实践总结篇

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

一、数据挖掘的价值体现

  任何数据分析或者挖掘的项目都不会直接产生经济价值和意义,分析出的数据结果既不能给企业直接带来一个客户,也不能帮助企业卖出一件产品。数据分析的价值体现在于业务部门根据分析结果制定相关的经营策略并贯彻执行。

二、大数据之困-通道

  大数据之困-如何打通底层数据存储到上层数据服务的通道问题,讲成为制约大数据发展的关键因素。当越来越多的人意识到大数据的未来在应用的时候,这个问题也就越来越紧迫。

三、大数据金融-行业化运作

  大数据金融行业化营销模式才是王道,单独的通过打项目的方式做项目会很累,是一种短视营销;立足行业、创立品牌、塑造形象、展示能力,客户才会找到你,项目才会水到渠成。

四、大数据金融实施切入

  结构化数据的应用体系已经成型,无论是去IOE还是BI替换,都会面临固有体系的挑战。非结构化数据作为互联网应用的产物,将会是大数据金融应用实施的比较好的切入点。但是具体做什么,如何做?却是需要好好的思考。

五、大数据服务-来的真的有点快

  之前的判断,大数据当前的方向在于计算平台和数据挖掘,未来的趋势在于数据服务,话落地尚未热乎,互联网企业的数据服务业务就开始上线了,来势凶猛啊。

六、大数据应用带来的行业革命

  受限于传统技术的制约,各个行业整合一直是概念上的,伴随大数据的技术,行业整合的步伐加快了好多。已经有不止一家企业和我谈到行业整合,而且已经拥有了实际的原型产品,感觉大数据带来的行业革命马上就要到来了。

七、大数据之去IOE

  某些大数据公司言必称去IOE,纯属扯淡。选错了对手并不可怕,可怕的是以救世主万能神的面目出现,却无法满足IOE所能实现的最基本的功能。大数据技术体系有其自身特点,IOE有IOE的应用场景,二者并行不悖,谁想干掉谁都是个问题。选择企业已有应用系统作为对手,是大数据应用推广最愚蠢的决定。没困难,制造困难也要上,是这个意思吗?

八、大数据实施之业务才是王道

  业务才是王道,业务驱动的需求,才能够带来项目,作为传统金融业的IT部门是运维部门,本身产生项目需求的能动性不强,稳定为主。所以大数据实施推广的攻坚应该改放在业务部门,而不是技术部门。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
10月前
|
存储 JSON 大数据
大数据离线数仓---金融审批数仓
大数据离线数仓---金融审批数仓
673 1
|
3月前
|
存储 分布式计算 安全
MaxCompute Bloomfilter index 在蚂蚁安全溯源场景大规模点查询的最佳实践
MaxCompute 在11月最新版本中全新上线了 Bloomfilter index 能力,针对大规模数据点查场景,支持更细粒度的数据裁剪,减少查询过程中不必要的数据扫描,从而提高整体的查询效率和性能。
|
3月前
|
分布式计算 DataWorks 搜索推荐
DataWorks产品评测:大数据开发治理平台的最佳实践与体验
DataWorks是阿里云推出的一款大数据开发治理平台,集成了多种大数据引擎,支持数据集成、开发、分析和任务调度。本文通过用户画像分析的最佳实践,评测了DataWorks的功能和使用体验,并提出了优化建议。通过实践,DataWorks在数据整合、清洗及可视化方面表现出色,适合企业高效管理和分析数据。
162 0
|
4月前
|
机器学习/深度学习 数据采集 搜索推荐
大数据与金融风控:信用评估的新标准
【10月更文挑战第31天】在数字经济时代,大数据成为金融风控的重要资源,特别是在信用评估领域。本文探讨了大数据在金融风控中的应用,包括多维度数据收集、智能数据分析、动态信用评估和个性化风控策略,以及其优势与挑战,并展望了未来的发展趋势。
ly~
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
259 3
|
4月前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
501 0
|
8月前
|
存储 分布式计算 监控
日志数据投递到MaxCompute最佳实践
日志服务采集到日志后,有时需要将日志投递至MaxCompute的表中进行存储与分析。本文主要向用户介绍将数据投递到MaxCompute完整流程,方便用户快速实现数据投递至MaxCompute。
293 2
|
7月前
|
存储 设计模式 分布式计算
面向对象编程在大数据处理中的最佳实践
【8月更文第12天】随着互联网和物联网技术的发展,数据量呈指数级增长,大数据处理已成为现代企业不可或缺的一部分。大数据处理通常涉及收集、存储、管理和分析海量数据集。传统的数据库管理系统难以应对这样的挑战,因此出现了诸如Hadoop、Spark等分布式处理框架。这些框架通常使用面向对象编程(OOP)来构建可扩展、可维护的应用程序。本文将探讨如何利用面向对象编程的原则和模式来优化大数据处理任务。
158 0
|
10月前
|
机器学习/深度学习 人工智能 大数据
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
AI时代Python金融大数据分析实战:ChatGPT让金融大数据分析插上翅膀
399 6
|
10月前
|
存储 运维 监控
大数据分析平台之 OLAP 架构的最佳实践
本文将分享聚水潭云原生 OLAP 架构的最佳实践。