用matplotlib获取雅虎股票数据并作图

简介: matplotlib有一个finance子模块提供了一个获取雅虎股票数据的api接口:quotes_historical_yahoo_ochl 感觉非常好用!   示例一        获取数据并作折线图 import matplotlib.

matplotlib有一个finance子模块提供了一个获取雅虎股票数据的api接口:quotes_historical_yahoo_ochl

感觉非常好用!

 

示例一

       获取数据并作折线图

import matplotlib.pyplot as plt
from matplotlib.finance import quotes_historical_yahoo_ochl  
from matplotlib.dates import YearLocator, MonthLocator, DateFormatter  
import datetime  

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

ticker = '600028.ss'
date1 = datetime.date( 2015, 1, 10 )  
date2 = datetime.date( 2016, 1, 10 )  
  
daysFmt  = DateFormatter('%m-%d-%Y')  
  
quotes = quotes_historical_yahoo_ochl(ticker, date1, date2)  
if len(quotes) == 0:  
    raise SystemExit
print(quotes[1])

dates = [q[0] for q in quotes]  
opens = [q[1] for q in quotes]
closes = [q[2] for q in quotes]
  
fig = plt.figure()  
ax = fig.add_subplot(111)  
ax.plot_date(dates, opens, '-')  
  
# format the ticks  
ax.xaxis.set_major_formatter(daysFmt)  
ax.autoscale_view()  
  
# format the coords message box  
def price(x): 
    return '$%1.2f'%x 
    
ax.fmt_xdata = DateFormatter('%Y-%m-%d')  
ax.fmt_ydata = price  
ax.grid(True)

fig.autofmt_xdate()  
plt.title('中国石化 600028')
plt.show() 

效果图:

 

示例二

      获取数据,并作蜡烛图

import matplotlib.pyplot as plt

from matplotlib.dates import DateFormatter, WeekdayLocator, DayLocator, MONDAY,YEARLY
from matplotlib.finance import quotes_historical_yahoo_ohlc, candlestick_ohlc

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

ticker = '600028' # 600028 是"中国石化"的股票代码
ticker += '.ss'   # .ss 表示上证 .sz表示深证

date1 = (2015, 8, 1) # 起始日期,格式:(年,月,日)元组
date2 = (2016, 1, 1)  # 结束日期,格式:(年,月,日)元组


mondays = WeekdayLocator(MONDAY)            # 主要刻度
alldays = DayLocator()                      # 次要刻度
#weekFormatter = DateFormatter('%b %d')     # 如:Jan 12
mondayFormatter = DateFormatter('%m-%d-%Y') # 如:2-29-2015
dayFormatter = DateFormatter('%d')          # 如:12

quotes = quotes_historical_yahoo_ohlc(ticker, date1, date2)
if len(quotes) == 0:
    raise SystemExit

fig, ax = plt.subplots()
fig.subplots_adjust(bottom=0.2)

ax.xaxis.set_major_locator(mondays)
ax.xaxis.set_minor_locator(alldays)
ax.xaxis.set_major_formatter(mondayFormatter)
#ax.xaxis.set_minor_formatter(dayFormatter)

#plot_day_summary(ax, quotes, ticksize=3)
candlestick_ohlc(ax, quotes, width=0.6, colorup='r', colordown='g')

ax.xaxis_date()
ax.autoscale_view()
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')

ax.grid(True)
plt.title('中国石化 600028')
plt.show()

效果图:

 

示例三

      获取上证50成分股数据,进行聚类分析(看看那些股票价格关联性强),并作图

import datetime

import numpy as np
import matplotlib.pyplot as plt

from matplotlib.finance import quotes_historical_yahoo_ochl
from matplotlib.collections import LineCollection

from sklearn import cluster, covariance, manifold

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

###############################################################################
# Retrieve the data from Internet

# Choose a time period reasonably calm (not too long ago so that we get
# high-tech firms, and before the 2008 crash)
d1 = datetime.datetime(2015, 1, 1)
d2 = datetime.datetime(2016, 1, 1)

# 上证50成分股
symbol_dict = {
    "600000": "浦发银行",
    "600010": "包钢股份",
    "600015": "华夏银行",
    "600016": "民生银行",
    "600018": "上港集团",
    "600028": "中国石化",
    "600030": "中信证券",
    "600036": "招商银行",
    "600048": "保利地产",
    "600050": "中国联通",
    "600089": "特变电工",
    "600104": "上汽集团",
    "600109": "国金证券",
    "600111": "北方稀土",
    "600150": "中国船舶",
    "600256": "广汇能源",
    "600406": "国电南瑞",
    "600518": "康美药业",
    "600519": "贵州茅台",
    "600583": "海油工程",
    "600585": "海螺水泥",
    "600637": "东方明珠",
    "600690": "青岛海尔",
    "600837": "海通证券",
    "600887": "伊利股份",
    "600893": "中航动力",
    "600958": "东方证券",
    "600999": "招商证券",
    "601006": "大秦铁路",
    "601088": "中国神华",
    "601166": "兴业银行",
    "601169": "北京银行",
    "601186": "中国铁建",
    "601288": "农业银行",
    "601318": "中国平安",
    "601328": "交通银行",
    "601390": "中国中铁",
    "601398": "工商银行",
    "601601": "中国太保",
    "601628": "中国人寿",
    "601668": "中国建筑",
    "601688": "华泰证券",
    "601766": "中国中车",
    "601800": "中国交建",
    "601818": "光大银行",
    "601857": "中国石油",
    "601901": "方正证券",
    "601988": "中国银行",
    "601989": "中国重工",
    "601998": "中信银行"}

symbols, names = np.array(list(symbol_dict.items())).T

quotes = [quotes_historical_yahoo_ochl(symbol+".ss", d1, d2, asobject=True)
          for symbol in symbols]

open = np.array([q.open for q in quotes]).astype(np.float)
close = np.array([q.close for q in quotes]).astype(np.float)

# 每日价格浮动包含了重要信息!
variation = close - open

###############################################################################
# Learn a graphical structure from the correlations
edge_model = covariance.GraphLassoCV()

# standardize the time series: using correlations rather than covariance
# is more efficient for structure recovery
X = variation.copy().T
X /= X.std(axis=0)
edge_model.fit(X)

###############################################################################
# Cluster using affinity propagation

_, labels = cluster.affinity_propagation(edge_model.covariance_)
n_labels = labels.max()

for i in range(n_labels + 1):
    print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i])))

###############################################################################
# Find a low-dimension embedding for visualization: find the best position of
# the nodes (the stocks) on a 2D plane

# We use a dense eigen_solver to achieve reproducibility (arpack is
# initiated with random vectors that we don't control). In addition, we
# use a large number of neighbors to capture the large-scale structure.
node_position_model = manifold.LocallyLinearEmbedding(
    n_components=2, eigen_solver='dense', n_neighbors=6)

embedding = node_position_model.fit_transform(X.T).T

###############################################################################
# Visualization
plt.figure(1, facecolor='w', figsize=(10, 8))
plt.clf()
ax = plt.axes([0., 0., 1., 1.])
plt.axis('off')

# Display a graph of the partial correlations
partial_correlations = edge_model.precision_.copy()
d = 1 / np.sqrt(np.diag(partial_correlations))
partial_correlations *= d
partial_correlations *= d[:, np.newaxis]
non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02)

# Plot the nodes using the coordinates of our embedding
plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels,
            cmap=plt.cm.spectral)

# Plot the edges
start_idx, end_idx = np.where(non_zero)
#a sequence of (*line0*, *line1*, *line2*), where::
#            linen = (x0, y0), (x1, y1), ... (xm, ym)
segments = [[embedding[:, start], embedding[:, stop]]
            for start, stop in zip(start_idx, end_idx)]
values = np.abs(partial_correlations[non_zero])
lc = LineCollection(segments,
                    zorder=0, cmap=plt.cm.hot_r,
                    norm=plt.Normalize(0, .7 * values.max()))
lc.set_array(values)
lc.set_linewidths(15 * values)
ax.add_collection(lc)

# Add a label to each node. The challenge here is that we want to
# position the labels to avoid overlap with other labels
for index, (name, label, (x, y)) in enumerate(
        zip(names, labels, embedding.T)):

    dx = x - embedding[0]
    dx[index] = 1
    dy = y - embedding[1]
    dy[index] = 1
    this_dx = dx[np.argmin(np.abs(dy))]
    this_dy = dy[np.argmin(np.abs(dx))]
    if this_dx > 0:
        horizontalalignment = 'left'
        x = x + .002
    else:
        horizontalalignment = 'right'
        x = x - .002
    if this_dy > 0:
        verticalalignment = 'bottom'
        y = y + .002
    else:
        verticalalignment = 'top'
        y = y - .002
    plt.text(x, y, name, size=10,
             horizontalalignment=horizontalalignment,
             verticalalignment=verticalalignment,
             bbox=dict(facecolor='w',
                       edgecolor=plt.cm.spectral(label / float(n_labels)),
                       alpha=.6))

plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(),
         embedding[0].max() + .10 * embedding[0].ptp(),)
plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(),
         embedding[1].max() + .03 * embedding[1].ptp())

plt.title('上证50成分股')
plt.show()

效果图:

 

说明

      这个图是原例子的图,统计的是美股60只股票,我用原例运行是可以的。

      但是我换成上证50成分股后,雅虎拒绝我的的连接,所以下载不了数据,因此就看不到效果!

      抱歉了各位朋友。

 

有图为证:

 

 

另:

示例四

      下载雅虎股票数据到本地保存

import os
import urllib.request

'''
雅虎历史数据请求

    请求地址:http://ichart.yahoo.com/table.csv?s=string&a=int&b=int&c=int&d=int&e=int&f=int&g=d&ignore=.csv
        或者:http://table.finance.yahoo.com/table.csv?a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=%s&ignore=.csv
        两者参数有点不一样

    说明:
        s — 股票名称
        a — 起始时间,月
        b — 起始时间,日
        c — 起始时间,年
        d — 结束时间,月
        e — 结束时间,日
        f — 结束时间,年
        g — 时间周期。

    Ø  参数g的取值范围:d->‘日’(day), w->‘周’(week),m->‘月’(mouth),v->‘dividends only’
    
    Ø  月份是从0开始的,如9月数据,则写为08。  <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

示例

    查询浦发银行2010.09.25 – 2010.10.8之间日线数据

    http://ichart.yahoo.com/table.csv?s=600000.SS&a=08&b=25&c=2010&d=09&e=8&f=2010&g=d

    查看国内沪深股市的股票,规则是:沪股代码末尾加.ss,深股代码末尾加.sz。如浦发银行的代号是:600000.SS
'''


ticker = '600028' # 600028 是"中国石化"的股票代码
ticker += '.ss'   # .ss 表示上证 .sz表示深证

date1 = ( 2015, 1, 1 ) #begining time  
date2 = ( 2016, 1, 1 ) #ending time  
  
d1 = (date1[1]-1, date1[2], date1[0])  
d2 = (date2[1]-1, date2[2], date2[0])  
  
g='d'  
  
urlFmt = 'http://table.finance.yahoo.com/table.csv?a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=%s&ignore=.csv'  
url =  urlFmt % (d1[0], d1[1], d1[2], d2[0], d2[1], d2[2], ticker, g)  #the url of historical data  

filename = 'data.csv'                #file name  
filename = os.path.join(os.path.dirname(__file__), filename)   #located file  
urllib.request.urlretrieve(url, filename) #下载,保存

 

目录
相关文章
|
Python
使用Python实现股票均线策略
使用Python实现股票均线策略案例的简单示例
287 2
|
程序员 Shell 数据格式
python股票量化交易(1)---K线图、均线与成交量绘制
python股票量化交易(1)---K线图、均线与成交量绘制
1692 0
python股票量化交易(1)---K线图、均线与成交量绘制
|
3月前
|
数据采集 Python
Pandas爬虫:某浪财经机构持股汇总
Pandas爬虫:某浪财经机构持股汇总
34 1
|
3月前
|
存储 数据可视化 数据挖掘
揭秘!Matplotlib与Seaborn联手,如何让Python数据分析结果一目了然,惊艳全场?
在数据驱动时代,高效直观地展示分析结果至关重要。Python中的Matplotlib与Seaborn是两大可视化工具,结合使用可生成美观且具洞察力的图表。本文通过分析某电商平台的商品销量数据集,展示了如何利用这两个库揭示商品类别与月份间的销售关系及价格对销量的影响。首先使用Matplotlib绘制月份销量分布直方图,再借助Seaborn的箱线图进一步探索不同类别和价格区间下的销量稳定性。
67 10
|
3月前
|
数据挖掘 Python
Pandas:从财务报表探寻上市公司之最
Pandas:从财务报表探寻上市公司之最
48 0
|
3月前
|
Python
matplotlib画出猪价格走势图
matplotlib画出猪价格走势图
141 0
|
7月前
|
数据采集 数据可视化 数据挖掘
数据分享|R语言逐步回归、方差分析anova电影市场调查问卷数据可视化
数据分享|R语言逐步回归、方差分析anova电影市场调查问卷数据可视化
|
7月前
|
存储 自然语言处理 数据可视化
R语言文本挖掘:kmeans聚类分析上海玛雅水公园景区五一假期评论词云可视化
R语言文本挖掘:kmeans聚类分析上海玛雅水公园景区五一假期评论词云可视化
R语言文本挖掘:kmeans聚类分析上海玛雅水公园景区五一假期评论词云可视化
|
7月前
|
存储 数据可视化 数据挖掘
R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据
R语言可视化:ggplot2冲积/桑基图sankey分析大学录取情况、泰坦尼克幸存者数据
|
7月前
|
数据采集 前端开发 C++
Python通过matplotlib动态绘图实现中美GDP历年对比趋势动图
随着中国的各种实力的提高,经常在各种媒体上看到中国与各个国家历年的各种指标数据的对比,为了更清楚的展示历年的发展趋势,有的还做成了动图,看到中国各种指标数据的近年的不断逆袭,心中的自豪感油然而生。今天通过Python来实现matplotlib的动态绘图,将中美两国近年的GDP做个对比,展示中国GPD对美国的追赶态势,相信不久的将来中国的GDP数据将稳超美国。
171 2