PyQt5 结合 matplotlib 时,如何显示其 NavigationToolbar

简介: 本文目的:展示 PyQt5 结合 matplotlib 时,如何显示其 NavigationToolbar。 本人搜遍所有网络无果,没办法,查看PyQt5源代码,最终才搞明白。。。特此留记。   〇、PyQt4 与 PyQt5 导入 NavigationToolbar 时的区别(去掉两个agg) # PyQt4 版本(网传) #from matplotlib.

本文目的:展示 PyQt5 结合 matplotlib 时,如何显示其 NavigationToolbar。

本人搜遍所有网络无果,没办法,查看PyQt5源代码,最终才搞明白。。。特此留记。

 

〇、PyQt4 与 PyQt5 导入 NavigationToolbar 时的区别(去掉两个agg

# PyQt4 版本(网传)
#from matplotlib.backends.backend_qt4agg import NavigationToolbar2QTAgg as NavigationToolbar

# PyQt5 版本 from matplotlib.backends.backend_qt5 import NavigationToolbar2QT as NavigationToolbar

 

一、隐藏 matplotlib 工具条

import sys
from PyQt5 import QtWidgets
 
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5 import NavigationToolbar2QT as NavigationToolbar
import matplotlib.pyplot as plt
 
import random
 
class Window(QtWidgets.QDialog):
    def __init__(self, parent=None):
        super().__init__(parent)
 
        self.figure = plt.figure()
        self.axes = self.figure.add_subplot(111)
        # We want the axes cleared every time plot() is called
        self.axes.hold(False)
        self.canvas = FigureCanvas(self.figure)
 
         
        self.toolbar = NavigationToolbar(self.canvas, self)
        self.toolbar.hide()
 
        # Just some button 
        self.button1 = QtWidgets.QPushButton('Plot')
        self.button1.clicked.connect(self.plot)
 
        self.button2 = QtWidgets.QPushButton('Zoom')
        self.button2.clicked.connect(self.zoom)
         
        self.button3 = QtWidgets.QPushButton('Pan')
        self.button3.clicked.connect(self.pan)
         
        self.button4 = QtWidgets.QPushButton('Home')
        self.button4.clicked.connect(self.home)
 
 
        # set the layout
        layout = QtWidgets.QVBoxLayout()
        layout.addWidget(self.toolbar)
        layout.addWidget(self.canvas)
        
        btnlayout = QtWidgets.QHBoxLayout()
        btnlayout.addWidget(self.button1)
        btnlayout.addWidget(self.button2)
        btnlayout.addWidget(self.button3)
        btnlayout.addWidget(self.button4)
        qw = QtWidgets.QWidget(self)
        qw.setLayout(btnlayout)
        layout.addWidget(qw)
        
        self.setLayout(layout)
 
    def home(self):
        self.toolbar.home()
    def zoom(self):
        self.toolbar.zoom()
    def pan(self):
        self.toolbar.pan()
         
    def plot(self):
        ''' plot some random stuff '''
        data = [random.random() for i in range(25)]
        self.axes.plot(data, '*-')
        self.canvas.draw()
 
if __name__ == '__main__':
    app = QtWidgets.QApplication(sys.argv)
 
    main = Window()
    main.setWindowTitle('Simple QTpy and MatplotLib example with Zoom/Pan')
    main.show()
 
    sys.exit(app.exec_())

 

二、显示 matplotlib 工具条

import sys, os, random

from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *

import matplotlib
matplotlib.use('Qt5Agg')
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5 import NavigationToolbar2QT as NavigationToolbar
from matplotlib.figure import Figure


class AppForm(QMainWindow):
    def __init__(self, parent=None):
        QMainWindow.__init__(self, parent)
        self.setWindowTitle('Demo: PyQt with matplotlib')

        self.create_menu()
        self.create_main_frame()
        self.create_status_bar()

        self.textbox.setText('1 2 3 4')
        self.on_draw()

    def save_plot(self):
        file_choices = "PNG (*.png)|*.png"
        
        path = QFileDialog.getSaveFileName(self, 
                        'Save file', '', 
                        file_choices)
        if path:
            self.canvas.print_figure(path, dpi=self.dpi)
            self.statusBar().showMessage('Saved to %s' % path, 2000)
    
    def on_about(self):
        msg = """ A demo of using PyQt with matplotlib:
        
         * Use the matplotlib navigation bar
         * Add values to the text box and press Enter (or click "Draw")
         * Show or hide the grid
         * Drag the slider to modify the width of the bars
         * Save the plot to a file using the File menu
         * Click on a bar to receive an informative message
        """
        QMessageBox.about(self, "About the demo", msg.strip())
    
    def on_pick(self, event):
        # The event received here is of the type
        # matplotlib.backend_bases.PickEvent
        #
        # It carries lots of information, of which we're using
        # only a small amount here.
        # 
        box_points = event.artist.get_bbox().get_points()
        msg = "You've clicked on a bar with coords:\n %s" % box_points
        
        QMessageBox.information(self, "Click!", msg)
    
    def on_draw(self):
        """ Redraws the figure
        """
        #str = unicode(self.textbox.text())
        self.data = list(map(int, self.textbox.text().split()))
        
        x = range(len(self.data))

        # clear the axes and redraw the plot anew
        #
        self.axes.clear()        
        self.axes.grid(self.grid_cb.isChecked())
        
        self.axes.bar(
            left=x, 
            height=self.data, 
            width=self.slider.value() / 100.0, 
            align='center', 
            alpha=0.44,
            picker=5)
        
        self.canvas.draw()
    
    def create_main_frame(self):
        self.main_frame = QWidget()
        
        # Create the mpl Figure and FigCanvas objects. 
        # 5x4 inches, 100 dots-per-inch
        #
        self.dpi = 100
        self.fig = Figure((5.0, 4.0), dpi=self.dpi)
        self.canvas = FigureCanvas(self.fig)
        self.canvas.setParent(self.main_frame)
        
        # Since we have only one plot, we can use add_axes 
        # instead of add_subplot, but then the subplot
        # configuration tool in the navigation toolbar wouldn't
        # work.
        #
        self.axes = self.fig.add_subplot(111)
        
        # Bind the 'pick' event for clicking on one of the bars
        #
        self.canvas.mpl_connect('pick_event', self.on_pick)
        
        # Create the navigation toolbar, tied to the canvas
        #
        self.mpl_toolbar = NavigationToolbar(self.canvas, self.main_frame)
        
        # Other GUI controls
        # 
        self.textbox = QLineEdit()
        self.textbox.setMinimumWidth(200)
        self.textbox.editingFinished.connect(self.on_draw)
        
        self.draw_button = QPushButton("&Draw")
        self.draw_button.clicked.connect(self.on_draw)
        
        
        self.grid_cb = QCheckBox("Show &Grid")
        self.grid_cb.setChecked(False)
        self.grid_cb.stateChanged.connect(self.on_draw) #int
        
        slider_label = QLabel('Bar width (%):')
        self.slider = QSlider(Qt.Horizontal)
        self.slider.setRange(1, 100)
        self.slider.setValue(20)
        self.slider.setTracking(True)
        self.slider.setTickPosition(QSlider.TicksBothSides)
        self.slider.valueChanged.connect(self.on_draw)#int
        
        #
        # Layout with box sizers
        # 
        hbox = QHBoxLayout()
        
        for w in [  self.textbox, self.draw_button, self.grid_cb,
                    slider_label, self.slider]:
            hbox.addWidget(w)
            hbox.setAlignment(w, Qt.AlignVCenter)
        
        vbox = QVBoxLayout()
        vbox.addWidget(self.mpl_toolbar)
        vbox.addWidget(self.canvas)
        vbox.addLayout(hbox)
        
        self.main_frame.setLayout(vbox)
        self.setCentralWidget(self.main_frame)
    
    def create_status_bar(self):
        self.status_text = QLabel("This is a demo")
        self.statusBar().addWidget(self.status_text, 1)
        
    def create_menu(self):        
        self.file_menu = self.menuBar().addMenu("&File")
        
        load_file_action = self.create_action("&Save plot",
            shortcut="Ctrl+S", slot=self.save_plot, 
            tip="Save the plot")
        quit_action = self.create_action("&Quit", slot=self.close, 
            shortcut="Ctrl+Q", tip="Close the application")
        
        self.add_actions(self.file_menu, 
            (load_file_action, None, quit_action))
        
        self.help_menu = self.menuBar().addMenu("&Help")
        about_action = self.create_action("&About", 
            shortcut='F1', slot=self.on_about, 
            tip='About the demo')
        
        self.add_actions(self.help_menu, (about_action,))

    def add_actions(self, target, actions):
        for action in actions:
            if action is None:
                target.addSeparator()
            else:
                target.addAction(action)

    def create_action(  self, text, slot=None, shortcut=None, 
                        icon=None, tip=None, checkable=False, 
                        signal="triggered()"):
        action = QAction(text, self)
        if icon is not None:
            action.setIcon(QIcon(":/%s.png" % icon))
        if shortcut is not None:
            action.setShortcut(shortcut)
        if tip is not None:
            action.setToolTip(tip)
            action.setStatusTip(tip)
        if slot is not None:
            action.triggered.connect(slot)
        if checkable:
            action.setCheckable(True)
        return action


def main():
    app = QApplication(sys.argv)
    form = AppForm()
    form.show()
    app.exec_()
    
if __name__ == "__main__":
    main()
    

 

目录
相关文章
|
Python
PyQt5嵌入matplotlib动画
1 # -*- coding: utf-8 -*- 2 3 import sys 4 from PyQt5 import QtWidgets 5 6 import numpy as np 7 from matplotlib.
1855 0
|
4月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
4月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
66 1
|
27天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
66 8
|
4月前
|
存储 数据可视化 数据挖掘
揭秘!Matplotlib与Seaborn联手,如何让Python数据分析结果一目了然,惊艳全场?
在数据驱动时代,高效直观地展示分析结果至关重要。Python中的Matplotlib与Seaborn是两大可视化工具,结合使用可生成美观且具洞察力的图表。本文通过分析某电商平台的商品销量数据集,展示了如何利用这两个库揭示商品类别与月份间的销售关系及价格对销量的影响。首先使用Matplotlib绘制月份销量分布直方图,再借助Seaborn的箱线图进一步探索不同类别和价格区间下的销量稳定性。
74 10
|
4月前
|
数据可视化 Python
Python中的数据可视化:使用Matplotlib绘制图表
【9月更文挑战第11天】在这篇文章中,我们将探索如何使用Python的Matplotlib库来创建各种数据可视化。我们将从基本的折线图开始,然后逐步介绍如何添加更多的功能和样式,以使您的图表更具吸引力和信息量。无论您是数据科学家、分析师还是任何需要将数据转化为视觉形式的专业人士,这篇文章都将为您提供一个坚实的起点。让我们一起潜入数据的海洋,用视觉的力量揭示其背后的故事。
67 17