使用pandas,7行代码实现朴素贝叶斯

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 作者:hhh5460大抵分成两类一、离散的、标签化的数据原文没有使用pandas,我使用pandas重新实现了朴素贝叶斯算法,看起来非常简洁、清爽。import pandas as pd'''导入数据集{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, ...

作者:hhh5460

大抵分成两类

一、离散的、标签化的数据

原文没有使用pandas,我使用pandas重新实现了朴素贝叶斯算法,看起来非常简洁、清爽。

import pandas as pd

'''
导入数据集
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}
{a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
{a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}
'''
#导入数据集
data = [[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[1, 1, 0],
[1, 1, 0],
[1, 1, 0],
[1, 1, 0],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[1, 0, 1],
[1, 0, 1],
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]]

df = pd.DataFrame(data, columns=['a1', 'a2', 'c'])

'''
#计算类别的先验概率
#P(C = 0) = 0.5
#P(C = 1) = 0.5
'''

#计算类别的先验概率
pc = df['c'].value_counts()/df['c'].size

'''
计算每个特征属性条件概率:
P(a1 = 0 | C = 0) = 0.3
P(a1 = 1 | C = 0) = 0.7
P(a2 = 0 | C = 0) = 0.4
P(a2 = 1 | C = 0) = 0.6
P(a1 = 0 | C = 1) = 0.5
P(a1 = 1 | C = 1) = 0.5
P(a2 = 0 | C = 1) = 0.7
P(a2 = 1 | C = 1) = 0.3
'''
# 计算每个特征属性条件概率:
pa1 = pd.crosstab(df['c'], df['a1'], margins=True).apply(lambda x:x/x[-1], axis=1)
pa2 = pd.crosstab(df['c'], df['a2'], margins=True).apply(lambda x:x/x[-1], axis=1)

'''
测试样本:
x = { a1 = 1, a2 = 1}
p(x | C = 0) = p(a1 = 1 | C = 0) * p( a2 = 1 | C = 0) = 0.3 * 0.6 = 0.18
p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 1 | C = 1) = 0.5 * 0.3 = 0.15
'''
# 给出测试样本:
x = pd.Series([1,1], index=['a1', 'a2'])
px = pa1.ix[:,x[0]].mul(pa2.ix[:,x[1]])[:-1]
'''
计算P(C | x):
P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09
P(C = 1) * p(x | C = 1) = 0.5 * 0.15 = 0.075
所以认为测试样本属于类型C1
'''
# 计算P(C | x)
res = pc.mul(px).argmax()
print(res)

同样的方法,7行代码解决这里的问题:

import pandas as pd

data = [['打喷嚏','护士','感冒'],
        ['打喷嚏','农夫','过敏'],
        ['头痛','建筑工人','脑震荡'],
        ['头痛','建筑工人','感冒'],
        ['打喷嚏','教师','感冒'],
        ['头痛','教师','脑震荡']]
        
df = pd.DataFrame(data, columns=['症状','职业','疾病'])


#计算类别的先验概率
pr = df['疾病'].value_counts()/df['疾病'].size


# 计算每个特征属性条件概率:
pzz = pd.crosstab(df['疾病'], df['症状'], margins=True).apply(lambda x:x/x[-1], axis=1)
pzy = pd.crosstab(df['疾病'], df['职业'], margins=True).apply(lambda x:x/x[-1], axis=1)

# 给出测试样本:
x = pd.Series(['打喷嚏','建筑工人'], index=['症状','职业'])
px = pzz.ix[:,x[0]].mul(pzy.ix[:,x[1]])[:-1]

# 计算P(C | x)
res = pr.mul(px).argmax()
print(res)

二、连续的、非标签化的数据

1.连续变量,样本足够大。使用区间,标签化

这里的第二个例子:
**

# 检测SNS社区中不真实账号

# 运维人员人工检测过的1万个账号作为训练样本

# 原始数据格式:
# ['日志数量','好友数量','注册天数','是否使用真实头像','账号类别']

'''可惜,没有真实数据!!!!'''
data = [
    [3,0,120,1,1],
    [3,0,120,1,1],
    [3,0,120,1,1],
    [3,0,120,1,1],
    [3,0,120,1,1],
    [3,0,120,1,1],
    [3,0,120,1,1],
    #...
    [3,0,120,1,1]]
    
df = pd.DataFrame(data, columns=['日志数量','好友数量','注册天数','是否使用真实头像','账号类别'])




# 计算训练样本中每个类别的频率(当做 类别的先验概率)
'''
P(C=0) = 8900/10000 = 0.89
P(C=1) = 1100/10000 = 0.11
'''
pr = df['账号类别'].value_counts()/df['账号类别'].size

#================================================================
#----------------------------------------------------------------

# 构建两个特征
# ['日志数量/注册天数','好友数量/注册天数']

df['日志数量/注册天数'] = df['日志数量'].div(df['注册天数'])
df['好友数量/注册天数'] = df['好友数量'].div(df['注册天数'])


# 把'日志数量/注册天数'分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞)三个区间
# 把'好友数量/注册天数'分解成[0, 0.1]、(0.1, 0.8)、[0.8, +∞)三个区间

# 打标签函数(根据 x 值所在的区间)
def depart(x, low, high):
    if x <= low:
        return 0
    elif x >= high:
        return 2
    else:
        return 1
        
# 打标签
df['特征1'] = df['日志数量/注册天数'].apply(depart, args=(0.05, 0.2))
df['特征2'] = df['好友数量/注册天数'].apply(depart, args=(0.1, 0.8))
df['特征3'] = df['是否使用真实头像']

#----------------------------------------------------------------
#================================================================


# 计算每个特征属性条件概率:
ptz1 = pd.crosstab(df['账号类别'], df['特征1'], margins=True).apply(lambda x:x/x[-1], axis=1)
ptz2 = pd.crosstab(df['账号类别'], df['特征2'], margins=True).apply(lambda x:x/x[-1], axis=1)
ptz3 = pd.crosstab(df['账号类别'], df['特征3'], margins=True).apply(lambda x:x/x[-1], axis=1)



# 给出测试样本:
x_ = pd.Series([0.1, 0.2, 0], index=['日志数量/注册天数', '好友数量/注册天数', '是否使用真实头像'])

#================================================================
#----------------------------------------------------------------
# 打标签
x = pd.Series([depart(x_[0], 0.05, 0.2), depart(x_[1], 0.1, 0.8), x_[2]], index=['特征1','特征2','特征3'])
#----------------------------------------------------------------
#================================================================
px = ptz1.ix[:,x[0]].mul(ptz2.ix[:,x[1]]).mul(ptz3.ix[:,x[2]])[:-1]



# 计算P(C | x)
res = pr.mul(px).argmax()
print(res)

2.连续变量,样本太小,无法划分区间。

假设符合正态分布,先求出按类的均值,方差,再代入密度函数
这里的第三个例子:
**

import pandas as pd

# 关于处理连续变量的另一种方法


# 下面是一组人类身体特征的统计资料
data = [['男', 6, 180, 12],
        ['男', 5.92, 190, 11],
        ['男', 5.58, 170, 12],
        ['男', 5.92, 165, 10],
        ['女', 5, 100, 6],
        ['女', 5.5, 150, 8],
        ['女', 5.42, 130, 7],
        ['女', 5.75, 150, 9]]

df = pd.DataFrame(data, columns=['性别','身高(英尺)','体重(磅)','脚掌(英寸)'])


# 已知某人身高6英尺、体重130磅,脚掌8英寸,请问该人是男是女?
x = pd.Series([6,130,8], index=['身高(英尺)','体重(磅)','脚掌(英寸)'])

# 这里的困难在于,
# 1.连续变量
# 2.样本太少(无法分成区间)

# 解决:
# 假设男性和女性的身高、体重、脚掌都是正态分布,
# 通过样本计算出均值和方差,也就是得到正态分布的密度函数。
# 有了密度函数,就可以把值代入,算出某一点的密度函数的值。

mean_male = df[df['性别']=='男'].mean()
var_male = df[df['性别']=='男'].var()

mean_formale = df[df['性别']=='女'].mean()
var_formale = df[df['性别']=='女'].var()

df2 = pd.concat((x, mean_male, var_male, mean_formale, var_formale), axis=1, keys=['x', 'mean_male', 'var_male', 'mean_formale', 'var_formale'])

# 正态分布密度函数:
# f(x|male) = exp(-(x-mean)**2/(2*var))/sqrt(2*pi*var)
from math import pi
def f(x, mean, var):
    return exp(-(x-mean)**2/(2*var))/sqrt(2*pi*var) # 密度函数

# 求对应的密度函数值
df2['px_male'] = df2['x', 'mean_male', 'var_male'].apply(lambda x:f(x[0],x[1],x[2])) ###################报错!容后再改!!
df2['px_formale'] = df2['x', 'mean_formale', 'var_formale'].apply(lambda x:f(x[0],x[1],x[2]))


# 类别的先验概率
pr = df['性别'].value_counts()/df['性别'].size

# 预测结果
res = pd.Series([df2['p_male'].cumprod()[-1]*pr['男'], df2['p_formale'].cumprod()[-1]]*pr['女'], index=['男','女']).argmax()
print(res)

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
5月前
|
机器学习/深度学习 数据挖掘 Python
机器学习之pandas基础——pandas与概率论的简短碰面
机器学习之pandas基础——pandas与概率论的简短碰面
47 4
|
4月前
|
数据采集 数据挖掘 数据处理
如何用pandas处理数据集?
如何用pandas处理数据集?【7月更文挑战第8天】
49 0
|
6月前
|
机器学习/深度学习 算法 数据挖掘
使用NumPy实现经典算法案例集
【4月更文挑战第17天】本文展示了NumPy在Python中实现经典算法的案例,包括使用NumPy进行冒泡排序、计算欧几里得距离、矩阵转置和协方差矩阵。这些示例突显了NumPy在数值计算、数据分析和科学计算中的威力,强调了掌握NumPy对于数据科学家和机器学习开发者的重要性。
|
6月前
|
Python
numpy与pandas的基础学习例子
numpy与pandas的基础学习例子
45 0
|
6月前
|
数据采集 Python
利用Pandas对小费数据集进行数据预处理实战(附源码)
利用Pandas对小费数据集进行数据预处理实战(附源码)
226 0
|
存储 算法 数据挖掘
Pandas处理时间序列数据的20个关键知识点
Pandas处理时间序列数据的20个关键知识点
339 0
Pandas处理时间序列数据的20个关键知识点
|
机器学习/深度学习 存储 数据可视化
|
算法 数据挖掘
数据挖掘-KNN算法+sklearn代码实现(六)
数据挖掘-KNN算法+sklearn代码实现(六)
114 0
数据挖掘-KNN算法+sklearn代码实现(六)
|
机器学习/深度学习 Python
【机器学习】贝叶斯分类器代码实现(python+sklearn)
【机器学习】贝叶斯分类器代码实现(python+sklearn)
268 0