python 回溯法 子集树模板 系列 —— 8、图的遍历

简介: 问题一个图:A --> BA --> CB --> CB --> DB --> EC --> AC --> DD --> CE --> FF --> CF --> D从图中的一个节点E出发,不重复地经过所有其它节点后,回到出发节点E,称为一条路径。

问题

一个图:
A --> B
A --> C
B --> C
B --> D
B --> E
C --> A
C --> D
D --> C
E --> F
F --> C
F --> D

从图中的一个节点E出发,不重复地经过所有其它节点后,回到出发节点E,称为一条路径。请找出所有可能的路径。

分析

将这个图可视化如下:
img_d99680f821eff28bd8cb434de7217914.jpg

本问题涉及到图,那首先要考虑图用那种存储结构表示。邻接矩阵、邻接表、...都不太熟。

百度一下,在这里发现了一个最爱。这是网上找到一种最简洁的邻接表表示方式。

接下来对问题本身进行分析:

显然,问题的解的长度是固定的,亦即所有的路径长度都是固定的:n(不回到出发节点) 或 n+1(回到出发节点)

每个节点,都有各自的邻接节点。

对某个节点来说,它的所有邻接节点,可以看作这个节点的状态空间。遍历其状态空间,剪枝,深度优先递归到下一个节点。搞定!

至此,很明显套用回溯法子集树模板。

代码

'''
图的遍历

从一个节点出发,不重复地经过所有其它节点后,回到出发节点。找出所有的路径
'''

# 用邻接表表示图
n = 6  # 节点数
a,b,c,d,e,f = range(n) # 节点名称
graph = [
    {b,c},
    {c,d,e},
    {a,d},
    {c},
    {f},
    {c,d}
]

x = [0]*(n+1)  # 一个解(n+1元数组,长度固定)
X = []         # 一组解


# 冲突检测
def conflict(k):
    global n,graph,x
    
    # 第k个节点,是否前面已经走过
    if k < n and x[k] in x[:k]:
        return True
        
    # 回到出发节点
    if k == n and x[k] != x[0]:
        return True
        
    return False # 无冲突
    

# 图的遍历
def dfs(k): # 到达(解x的)第k个节点
    global n,a,b,c,d,e,f,graph,x,X
    
    if k > n: # 解的长度超出,已走遍n+1个节点 (若不回到出发节点,则 k==n)
        print(x)
        #X.append(x[:])
    else:
        for node in graph[x[k-1]]: # 遍历节点x[k]的邻接节点(x[k]的所有状态)
            x[k] = node
            if not conflict(k): # 剪枝
                dfs(k+1)
                
# 测试
x[0] = e # 出发节点
dfs(1)   # 开始处理解x中的第2个节点

效果图

img_2753d0ff8ad5ec665ab494c6c690666e.jpg

目录
相关文章
|
Python
python 回溯法 记录
一直不是太理解回溯法,这几天集中学习了一下,记录如下。 回溯法有“通用的解题法”之称。 1.定义:  也叫试探法,它是一种系统地搜索问题的解的方法。 2.基本思想:  从一条路往前走,能进则进,不能进则退回来,换一条路再试。
3173 0
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
287 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
314 104
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
260 103
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
193 82
|
2月前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
179 3
|
2月前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
420 3
|
2月前
|
并行计算 安全 计算机视觉
Python多进程编程:用multiprocessing突破GIL限制
Python中GIL限制多线程性能,尤其在CPU密集型任务中。`multiprocessing`模块通过创建独立进程,绕过GIL,实现真正的并行计算。它支持进程池、队列、管道、共享内存和同步机制,适用于科学计算、图像处理等场景。相比多线程,多进程更适合利用多核优势,虽有较高内存开销,但能显著提升性能。合理使用进程池与通信机制,可最大化效率。
264 3
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
260 0